

Geotechnical | Environmental | Residential | Pavements

Level 1 Supervision Report Newbridge South Stage 3 - Wallan

Universal Corporation March 2021

TABLE OF CONTENTS

1.	. INT	RODUCTION	1
2.	. PRO	OJECT SUMMARY	1
3.	. INS	SPECTION AND SUPERVISION	2
	3.1	FILL PLACEMENT AND TESTING SPECIFICATIONS	2
	3.2	STRIP SURFACE INSPECTION	2
4.	. EAF	RTHWORKS AND TESTING	3
	4.2	FILL MATERIAL	3
	4.3	FILL CONSTRUCTION	3
	4.4	TESTING AND RESULTS	3
5.	. co	NCLUSION	4
6	. LIM	IITATION OF THIS REPORT	4
7.	. UNI	DERSTANDING LEVEL 1 INSPECTION AND TESTING	4
Α	PPEND	DIX 1 – SITE PLAN	6
Α	PPEND	DIX 2 – TESTING SUMMARY	7
Α	PPEND	DIX 3 – NATA LAB RESULTS	8
			9

Document Details

Project Number	6387.03	Rev 0
Project Name	Newbridge South Stage 3	
Project Location	Wallan - VIC	
Client	Universal Corporation 57 Yale Drive Epping VIC 3076	

1. INTRODUCTION

Continent Geotech Services (CGS) has been engaged by Universal Corporation to provide Level 1 Geotechnical Supervision of fill activity at Newbridge South Stage 3 at Wallan - VIC. The purpose of this report is to summarise the site inspection, compaction control and laboratory testing services performed by CGS for Newbridge South Stage 3 project.

Level 1 Inspection and Testing, as defined in AS3798 – 2007 'Guideline on Earthworks for Commercial and Residential Development', provides for full time inspection of the construction of controlled full and field laboratory testing accordance with AS1289 'Methods of Testing Soils for Engineering Purposes'. The compaction control testing was undertaken by our experienced Geotechnician/engineer from CGS.

2. PROJECT SUMMARY

CGS provided the Level 1 Inspection and Testing of the controlled fill placed as part of construction and development process of Newbridge South stage 3 residential subdivision development process.

The earthworks were carried out by Universal corporation with their own/hired equipment. CGS undertook the compaction control testing of the fill material as part of Level 1 Inspection and Testing process. General Fill material used for construction was locally sourced from site and imported from nearby construction activities consists mainly silty clay, which makes material used to be able to test with AS1289 methods for compaction compliance as per AS3798 – 2007.

The areas of controlled fill were placed is shown on site plan attached the Appendix 1 which is based on drawings (18040-03-01, Rev B) prepared by Urban Design and Management. The Level 1 Inspection and testing commenced on April 2021 and was completed on December 2021.

3. INSPECTION AND SUPERVISION

3.1 Fill Placement and Testing Specifications

The fill placement and testing were carried out in accordance with AS3798 – 2007 'Guideline on Earthworks for Commercial and Residential Development', the following specifications based generally on the requirements of AS3798:

- The fill area shall be stripped of topsoil, subsoil, soft material and vegetation to firm based approved by superintendent.
- Suitable fill material shall be placed in loose horizontal layers not exceeding 400mm in thickness.
- The fill shall be compacted to Dry Density Ratio of at least 95% Standard (AS1289 5.1.1, 5.4.1 or 5.7.1),
- The fill material shall not contain greater than 20% by volume, of particles size greater than 37.5mm and no particle size over 200mm in any dimension,
- The frequency of field density testing shall be accordance with AS3798 for large scale developments (Type 1), which nominates a frequency of not less than
 - 1 test per layer of 200mm per 2500mm²
 - 1 test per 500m³ distributed reasonably evenly throughout the full depth and area: or
 - 3 tests per site visit, which requires the most tests

The technical specification of the structural fill was not provided, so the above guidelines were assumed for earthworks.

3.2 Strip Surface Inspection

The subgrade for the fill area was prepared by removing the topsoil, silt layer and vegetation layer using a grader and excavator. The inspection was carried out to confirm all the vegetation and topsoils are removed from the stripped surface.

Subgrade assessment was carried out by CGS following the topsoil removal and before any fill was placed. The soils exposed at the subgrade comprised natural clays silts and silty clays. No soft spots were observing during the subgrade assessment.

4. EARTHWORKS AND TESTING

4.2 Fill Material

Fill material was mainly externally sourced from other nearby construction projects excavations at Donnybrook, Springridge and Wollert. Some fill was sourced onsite from excavation works including road construction, drainage constructions activities.

The cleaned fill material was visually assessed by Geotechnician to confirm is clean from debris/ vegetative matter and oversize rocks. It should be noted that no environmental analysis was performed by CGS on the fill material as it was sourced from naturally occurring soils.

4.3 Fill Construction

The fill material was moisture conditioned during the placement and prior to placement while it was stockpiled.

The fill material generally placed in approximately 200m to 300mm loose layers, compacted layers achieved approximately 150mm to 250mm in thickness. The material was spread using dump truck, using and compactor with dozer blade. The Cat 12 tonne sheepsfoot roller was also used to compact the material after placement. There was no onsite surveyor was to provide the reduced levels while fill placement, however the layers were checked with site personnel with electronic laser level.

CGS's level 1 Geotechnician was on site on a full-time basis during placement, compaction and testing of the fill within the allotments.

4.4 Testing and Results

Field density testing was undertaken progressively on the compacted fill at the frequency of minimum tests as required for Type 1 Earthworks (large scale operations) as defined in table 8.1 of the AS3798-2007.

The field testing was undertaken by CGS, and all laboratory testing was performed in our NATA accredited laboratory in Thomastown.

The total 217 field density and laboratory Hilf compaction tests were performed in all fill areas. The reports verify the achievement of the minimum density requirement of 95% Standard Compaction throughout the full depth area, with each layer tested accordingly. All the tests' results were provided to client for inclusion within their internal quality system (refer to Appendix 2).

The location for all the tests performed is shown in Appendix 1 - Site Plan.

5. CONCLUSION

Following the completion of the earthworks and material assessment, the filling procedures conducted by Universal Civil Construction satisfied the requirements of AS3798, regarding the placement of fill material on a project under Level 1 Supervision, and in accordance with specification as provided to CGS. Based on observations made by our on site Geotechnician (Level 1 Inspector) and the results of field and laboratory tests, CGS consider that the engineered fill placed with stage 3 by client, to the layers indicated in Appendix 2, as far as we have able to determine, has been placed in general accordance with intent of the specification.

This report has been prepared for benefit of our client with respect to the particular brief given to us and it may not be relied upon in other purpose without our prior review and agreement. No responsibility for this report will be taken by CGS if it is altered in any way, or not reproduced in full.

6. LIMITATION OF THIS REPORT

This report is valid for the following completion of level 1 supervision. CGS does not accept responsibility for any distortion or deviation of measurements as reported at the time given. It should be noted that even though the fill layer was moisture conditioned while compacting and meets the requirement but over the dry and wet weather it is subject to drying and cracking. The top 200-300mm of fill will deteriorate with time and should be taken into account by foundation engineer prior to construction of dwelling. The levels nominated in this report are guiding to amounts of fill placed and do not necessarily reflect accurate survey of fill levels.

It should be noted that any fill placed as part of drainage, sewer works, pavement works is not part of this level 1 supervision report

This report will be considered invalid if:

- Any works were carried/conducted on the site without supervision of CGS technician
- Any other unforeseeable event any event outside of the time described above.

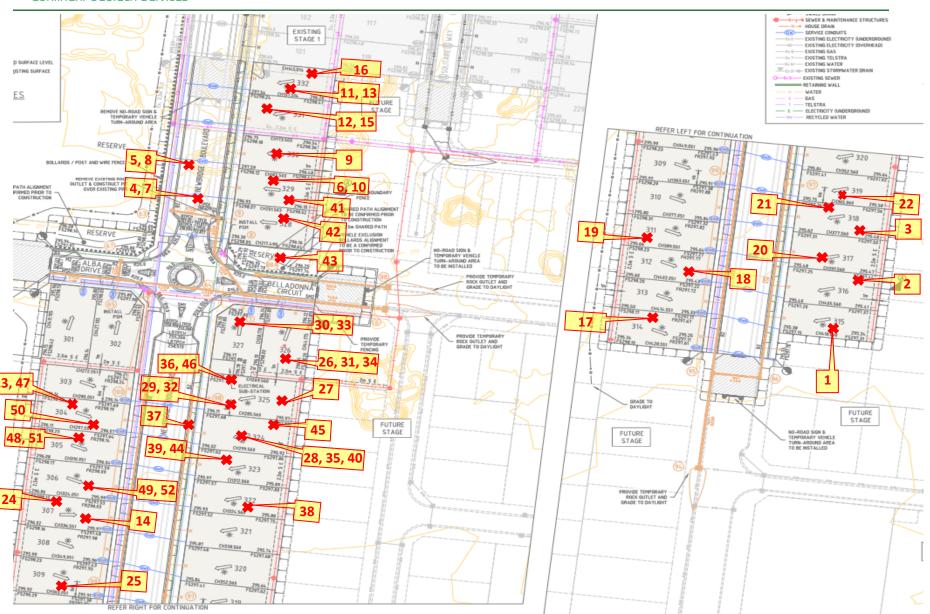
7. UNDERSTANDING LEVEL 1 INSPECTION AND TESTING

The purpose of performing level 1 inspection and testing is to ensure compliance of fill construction with the nominated specifications. The engagement of Geotechnical Inspection Testing Authority (GITA) allows the contractor to perform his role in the construction of the filling operation while the GITA monitors quality control of process of the fill placement. The visual observations of construction process and methodologies used by contractor allows the

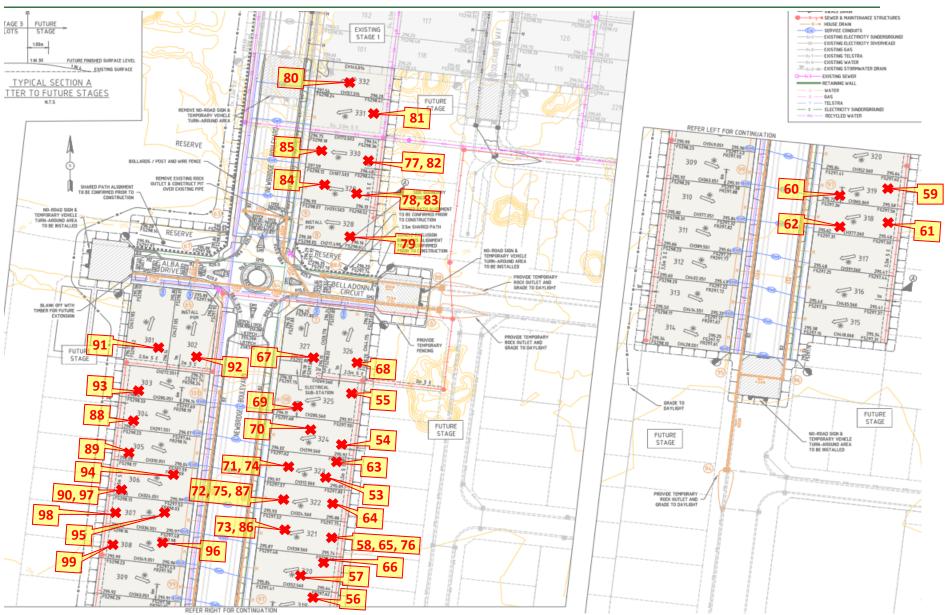
GITA to approve the subsequent placement of fill without having to wait to completion of testing and the extended time it takes to complete the laboratory results. The GITA will carry out random spots checks of the filling operations and complete the compaction control test for day's work. Level 1 inspection and testing requires full time inspection and testing of the fill placement undertaken on site. CGS are notified daily by project foreman where subsequent days of fill placement under level 1 to occur. Generally, projects rely on importation of a fill source, there can be delays in receipt of sufficient material to start placing which may result the periods where GITA representative not required on site. It is contractor's responsibility to notify the GITA prior to start any fill placement. A GITA relies on the contractor to advise when the site attendance required and makes all reasonable visual attempts to assess if the works were the same as pervious day of attendance.

Prepared By

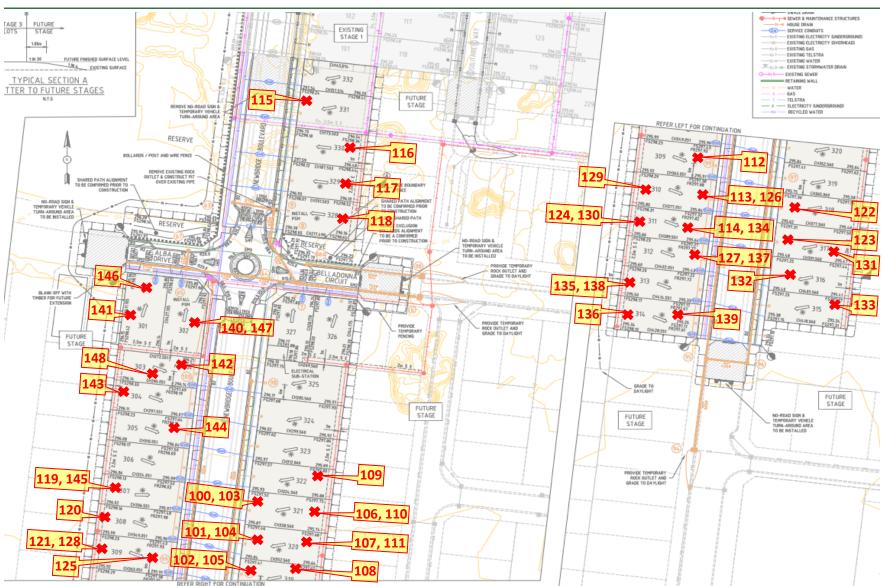
P Sinwer - Geotechnical Engineer

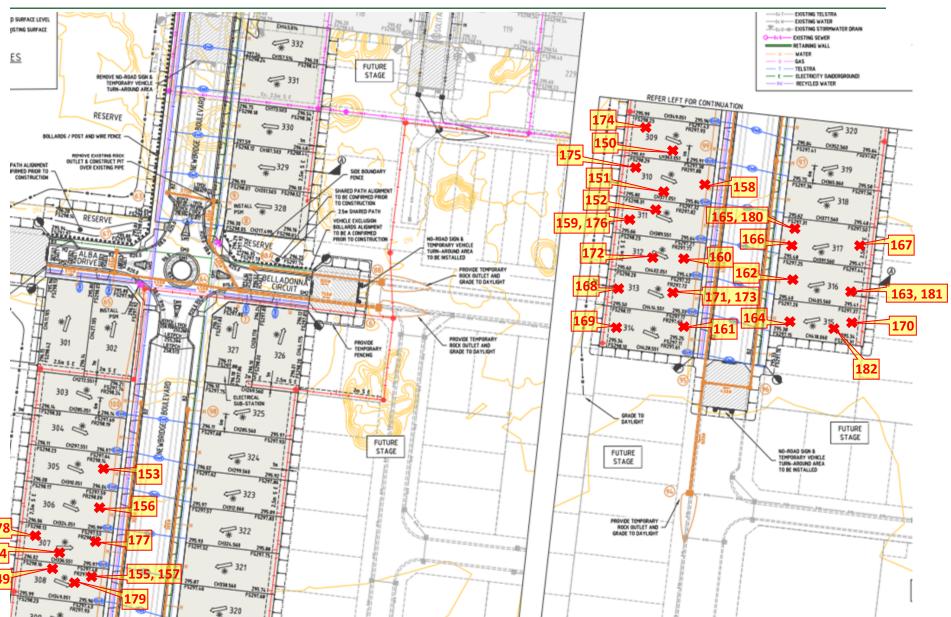

Reviewed By

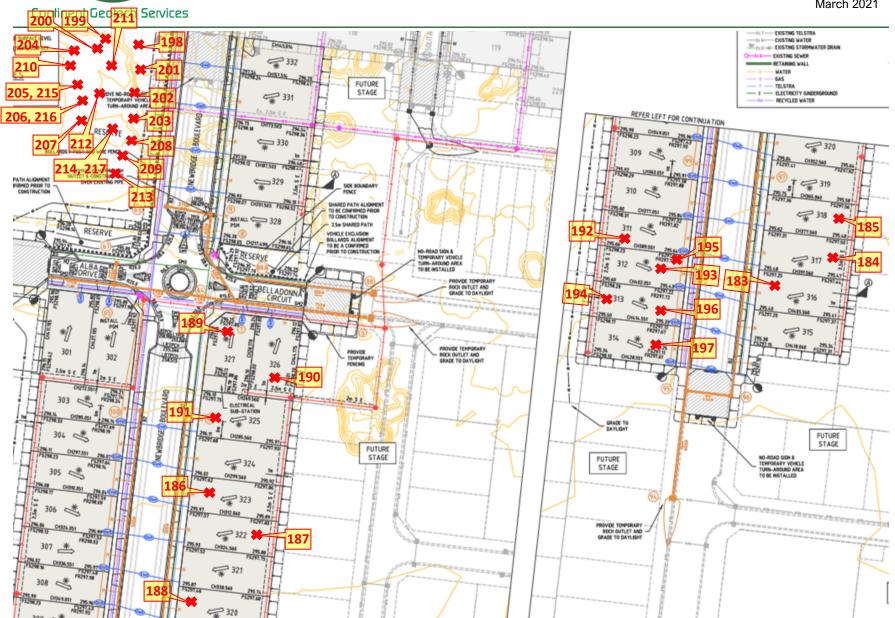
S Kang - Project Manager



APPENDIX 1 – SITE PLAN







APPENDIX 2 – TESTING SUMMARY

Sample No.	Test No.	Lot No.	Layer	Material Type	Date Tested	Density Ratio (%)	Moisture Variation of OMC (%)	Pass/Fail
31550	1	Lot 315	Layer 1 - Stage 3	FILL - Silty Clay	17-Apr-20	95.5	0.5% Dry	Pass
31551	2	Lot 316	Layer 1 - Stage 3	FILL - Silty Clay	17-Apr-20	96.0	Omc	Pass
31552	3	Lot 318	Layer 1 - Stage 3	FILL - Silty Clay	17-Apr-20	95.5	Omc	Pass
31597	4	Newbridge Blvd	Layer 1 - Stage 3	FILL - Silty Clay	21-Apr-20	99.0	Omc	Pass
31598	5	Newbridge Blvd	Layer 1 - Stage 3	FILL - Silty Clay	21-Apr-20	99.0	0.5% Dry	Pass
31599	6	Lot 329	Layer 1 - Stage 3	FILL - Silty Clay	21-Apr-20	96.0	0.5% Dry	Pass
31600	7	Newbridge Blvd	Layer 1 - Stage 3	FILL - Silty Clay	21-Apr-20	95.0	Omc	Pass
31601	8	Newbridge Blvd	Layer 1 - Stage 3	FILL - Silty Clay	21-Apr-20	99.0	1.5% Dry	Pass
31645	9	Lot 330	Layer 1 - Stage 3	FILL - Silty Clay	22-Apr-20	98.0	Omc	Pass
31646	10	Lot 329	Layer 1 - Stage 3	FILL - Silty Clay	22-Apr-20	95.5	0.5% Dry	Pass
31647	11	Lot 332	Layer 2 - Stage 3	FILL - Silty Clay	22-Apr-20	97.0	Omc	Pass
31648	12	Lot 331	Layer 2 - Stage 3	FILL - Silty Clay	22-Apr-20	100.0	Omc	Pass
31649	13	Lot 332	Layer 3 - Stage 3	FILL - Silty Clay	22-Apr-20	100.0	1.5% Dry	Pass
31741	14	Lot 307	Layer 1 - Stage 3	FILL - Silty Clay	24-Apr-20	100.5	0.5% Dry	Pass
31742	15	Lot 331	Layer 3 - Stage 3	FILL - Silty Clay	24-Apr-20	99.0	0.5% Dry	Pass
31743	16	Lot 332	Layer 3 - Stage 3	FILL - Silty Clay	24-Apr-20	97.0	Omc	Pass
31765	17	Lot 314	Layer 1 - Stage 3	FILL - Silty Clay	29-Apr-20	100.0	Omc	Pass

31766	18	Lot 312	Layer 1 - Stage 3	FILL - Silty Clay	29-Apr-20	100.0	0.5% Dry	Pass
31767	19	Lot 311	Layer 1 - Stage 3	FILL - Silty Clay	29-Apr-20	98.5	Omc	Pass
31591	20	Lot 317	Layer 2 - Stage 3	FILL - Silty Clay	20-Apr-20	99.5	Omc	Pass
31592	21	Lot 318	Layer 2 - Stage 3	FILL - Silty Clay	20-Apr-20	99.5	0.5% Wet	Pass
31593	22	Lot 319	Layer 2 - Stage 3	FILL - Silty Clay	20-Apr-20	97.0	1.5% Wet	Pass
31674	23	Lot 304	Layer 2 - Stage 3	FILL - Silty Clay	23-Apr-20	97.0	Omc	Pass
31675	24	Lot 307	Layer 2 - Stage 3	FILL - Silty Clay	23-Apr-20	97.0	Omc	Pass
31676	25	Lot 309	Layer 2 - Stage 3	FILL - Silty Clay	23-Apr-20	98.0	Omc	Pass
31762	26	Lot 326	Layer 1 - Stage 3	FILL - Silty Clay	27-Apr-20	98.0	0.5% Dry	Pass
31763	27	Lot 325	Layer 1 - Stage 3	FILL - Silty Clay	27-Apr-20	96.5	Omc	Pass
31764	28	Lot 324	Layer 1 - Stage 3	FILL - Silty Clay	27-Apr-20	96.5	0.5% Wet	Pass
31932	29	Lot 325	Layer 3 - Stage 3	FILL - Silty Clay	27-Apr-20	96.5	Omc	Pass
31933	30	Lot 327	Layer 3 - Stage 3	FILL - Silty Clay	27-Apr-20	95.5	Omc	Pass
31934	31	Lot 326	Layer 3 - Stage 3	FILL - Silty Clay	27-Apr-20	97.0	Omc	Pass
31949	32	Lot 325	Layer 4 - Stage 3	FILL - Silty Clay	06-May-20	97.5	Omc	Pass
31950	33	Lot 327	Layer 4 - Stage 3	FILL - Silty Clay	06-May-20	95.0	0.5% Dry	Pass
31951	34	Lot 326	Layer 4 - Stage 3	FILL - Silty Clay	06-May-20	95.5	0.5% Dry	Pass
31958	35	Lot 324	Layer 5 - Stage 3	FILL - Silty Clay	07-May-20	99.5	0.5% Dry	Pass
31959	36	Lot 325	Layer 5 - Stage 3	FILL - Silty Clay	07-May-20	97.0	Omc	Pass

31960	37	Newbridge Blvd	Layer 5 - Stage 3	FILL - Silty Clay	07-May-20	98.0	Omc	Pass
32033	38	Lot 322	Layer 4 - Stage 3	FILL - Silty Clay	12-May-20	96.5	0.5% Dry	Pass
32034	39	Lot 323	Layer 4 - Stage 3	FILL - Silty Clay	12-May-20	96.5	Omc	Pass
32035	40	Lot 324	Layer 5 - Stage 3	FILL – Silty Clay	12-May-20	95.5	Omc	Pass
31988	41	Lot 329	Layer 5 - Stage 3	FILL - Silty Clay	08-May-20	96.5	Omc	Pass
31989	42	Lot 328	Layer 5 - Stage 3	FILL - Silty Clay	08-May-20	97.0	0.5% Dry	Pass
31990	43	Reserve	Layer 5 - Stage 3	FILL - Silty Clay	08-May-20	96.5	0.5% Dry	Pass
32081	44	Lot 323	Layer 5 - Stage 3	FILL - Silty Clay	15-May-20	98.0	Omc	Pass
32082	45	Lot 324	Layer 6 - Stage 3	FILL - Silty Clay	15-May-20	99.0	1% Wet	Pass
32083	46	Lot 325	Layer 5 - Stage 3	FILL - Silty Clay	15-May-20	96.0	Omc	Pass
32162	47	Lot 304	Layer 4 - Stage 3	FILL - Silty Clay	18-May-20	97.0	0.5% Dry	Pass
32163	48	Lot 305	Layer 4 - Stage 3	FILL - Silty Clay	18-May-20	98.5	1% Wet	Pass
32164	49	Lot 306	Layer 4 - Stage 3	FILL - Silty Clay	18-May-20	95.5	0.5% Dry	Pass
32186	50	Lot 304	Layer 5 - Stage 3	FILL - Silty Clay	19-May-20	96.5	Omc	Pass
32187	51	Lot 305	Layer 5 - Stage 3	FILL - Silty Clay	19-May-20	97.5	0.5% Wet	Pass
32188	52	Lot 306	Layer 5 - Stage 3	FILL - Silty Clay	19-May-20	97.5	Omc	Pass
33470	53	Lot 323	Layer 4 - Stage 3	FILL - Silty Clay	16-Jul-20	98.0	Omc	Pass
33471	54	Lot 324	Layer 4 - Stage 3	FILL - Silty Clay	16-Jul-20	97.5	0.5% Dry	Pass
33472	55	Lot 325	Layer 4 - Stage 3	FILL - Silty Clay	16-Jul-20	97.5	0.5% Dry	Pass

33520	56	Lot 319	Layer 1 - Stage 3	FILL - Silty Clay	17-Jul-20	95.0	0.5% Wet	Pass
33521	57	Lot 320	Layer 1 - Stage 3	FILL - Silty Clay	17-Jul-20	98.5	Omc	Pass
33522	58	Lot 321	Layer 1 - Stage 3	FILL - Silty Clay	17-Jul-20	95.5	0.5% Dry	Pass
33523	59	Lot 319	Layer 1 - Stage 3	FILL - Silty Clay	20-Jul-20	96.5	0.5% Wet	Pass
33524	60	Lot 319	Layer 1 - Stage 3	FILL - Silty Clay	20-Jul-20	97.5	Omc	Pass
33525	61	Lot 318	Layer 1 - Stage 3	FILL - Silty Clay	20-Jul-20	97.0	2% Dry	Pass
33526	62	Lot 318	Layer 1 - Stage 3	FILL - Silty Clay	20-Jul-20	96.0	Omc	Pass
33527	63	Lot 323	Layer 4 - Stage 3	FILL - Silty Clay	21-Jul-20	98.0	0.5% Wet	Pass
33528	64	Lot 322	Layer 4 - Stage 3	FILL - Silty Clay	21-Jul-20	96.5	0.5% Dry	Pass
33529	65	Lot 321	Layer 4 - Stage 3	FILL - Silty Clay	21-Jul-20	96.0	Omc	Pass
33530	66	Lot 320	Layer 4 - Stage 3	FILL - Silty Clay	21-Jul-20	98.0	Omc	Pass
33599	67	Lot 327	Layer 3 - Stage 3	FILL - Silty Clay	22-Jul-20	97.0	0.5% Wet	Pass
33600	68	Lot 326	Layer 3 - Stage 3	FILL - Silty Clay	22-Jul-20	97.5	Omc	Pass
33601	69	Lot 325	Layer 3 - Stage 3	FILL - Silty Clay	22-Jul-20	98.0	2% Dry	Pass
33602	70	Lot 324	Layer 3 - Stage 3	FILL - Silty Clay	22-Jul-20	96.5	2% Dry	Pass
33603	71	Lot 323	Layer 4 - Stage 3	FILL - Silty Clay	23-Jul-20	98.0	Omc	Pass
33604	72	Lot 322	Layer 4 - Stage 3	FILL - Silty Clay	23-Jul-20	98.5	Omc	Pass
33605	73	Lot 321	Layer 4 - Stage 3	FILL - Silty Clay	23-Jul-20	95.5	Omc	Pass
33606	74	Lot 323	Layer 5 - Stage 3	FILL - Silty Clay	24-Jul-20	96.5	1.5% Wet	Pass
33607	75	Lot 322	Layer 5 - Stage 3	FILL - Silty Clay	24-Jul-20	97.5	Omc	Pass

33608	76	Lot 321	Layer 5 - Stage 3	FILL - Silty Clay	24-Jul-20	97.5	0.5% Dry	Pass
33745	77	Lot 330	Layer 6 - Stage 3	FILL - Silty Clay	31-Jul-20	97.5	1.5% Dry	Pass
33746	78	Lot 329	Layer 6 - Stage 3	FILL - Silty Clay	31-Jul-20	96.5	Omc	Pass
33747	79	Lot 328	Layer 6 - Stage 3	FILL - Silty Clay	31-Jul-20	97.5	1.5% Dry	Pass
34001	80	Lot 332	Layer 6 - Stage 3	FILL - Silty Clay	02-Sep-20	97.0	0.5% Wet	Pass
34002	81	Lot 331	Layer 6 - Stage 3	FILL - Silty Clay	02-Sep-20	97.0	Omc	Pass
34003	82	Lot 330	Layer 6 - Stage 3	FILL - Silty Clay	02-Sep-20	95.0	0.5% Wet	Pass
34004	83	Lot 329	Layer 6 - Stage 3	FILL - Silty Clay	02-Sep-20	97.0	0.5% Wet	Pass
34005	84	Lot 329	Layer 6 - Stage 3	FILL - Silty Clay	03-Sep-20	96.5	1% Wet	Pass
34006	85	Lot 330	Layer 6 - Stage 3	FILL - Silty Clay	03-Sep-20	97.0	0.5% Wet	Pass
34007	86	Lot 321	Layer 6 - Stage 3	FILL - Silty Clay	03-Sep-20	96.0	0.5% Wet	Pass
34008	87	Lot 322	Layer 6 - Stage 3	FILL - Silty Clay	03-Sep-20	96.5	0.5% Wet	Pass
34087	88	Lot 304	Layer 6 - Stage 3	FILL - Silty Clay	08-Sep-20	98.0	0.5% Wet	Pass
34088	89	Lot 305	Layer 6 - Stage 3	FILL - Silty Clay	08-Sep-20	99.0	Omc	Pass
34089	90	Lot 306	Layer 6 - Stage 3	FILL - Silty Clay	08-Sep-20	100.5	0.5% Wet	Pass
34090	91	Lot 301	Layer 6 - Stage 3	FILL - Silty Clay	10-Sep-20	101.0	Omc	Pass
34091	92	Lot 302	Layer 6 - Stage 3	FILL - Silty Clay	10-Sep-20	98.5	Omc	Pass
34092	93	Lot 303	Layer 6 - Stage 3	FILL - Silty Clay	10-Sep-20	100.0	0.5% Dry	Pass
34093	94	Lot 306	Layer 7 - Stage 3	FILL - Silty Clay	10-Sep-20	101.5	0.5% Wet	Pass
34094	95	Lot 307	Layer 7 - Stage 3	FILL - Silty Clay	10-Sep-20	98.0	Omc	Pass

34095	96	Lot 308	Layer 7 - Stage 3	FILL - Silty Clay	10-Sep-20	98.5	2% Dry	Pass
34224	97	Lot 306	Layer 7 - Stage 3	FILL - Silty Clay	11-Sep-20	97.0	Omc	Pass
34225	98	Lot 307	Layer 7 - Stage 3	FILL - Silty Clay	11-Sep-20	100.0	Omc	Pass
34226	99	Lot 308	Layer 7 - Stage 3	FILL - Silty Clay	11-Sep-20	99.0	Omc	Pass
34227	100	Lot 321	Layer 7 - Stage 3	FILL - Silty Clay	15-Sep-20	101.5	0.5% Wet	Pass
34228	101	Lot 320	Layer 7 - Stage 3	FILL - Silty Clay	15-Sep-20	99.0	Omc	Pass
34229	102	Lot 319	Layer 7 - Stage 3	FILL – Silty Clay	15-Sep-20	99.0	Omc	Pass
34315	103	Lot 321	Layer 8 - Stage 3	FILL - Silty Clay	15-Sep-20	98.0	0.5% Wet	Pass
34316	104	Lot 320	Layer 8 - Stage 3	FILL - Silty Clay	15-Sep-20	97.0	0.5% Wet	Pass
34317	105	Lot 319	Layer 8 - Stage 3	FILL - Silty Clay	15-Sep-20	101.5	0.5% Dry	Pass
34318	106	Lot 321	Layer 9 - Stage 3	FILL - Silty Clay	17-Sep-20	96.5	0.5% Wet	Pass
34319	107	Lot 320	Layer 9 - Stage 3	FILL - Silty Clay	17-Sep-20	98.5	Omc	Pass
34320	108	Lot 319	Layer 9 - Stage 3	FILL - Silty Clay	17-Sep-20	99.5	Omc	Pass
34321	109	Lot 322	Layer 9 - Stage 3	FILL - Silty Clay	18-Sep-20	101.0	Omc	Pass
34322	110	Lot 321	Layer 9 - Stage 3	FILL - Silty Clay	18-Sep-20	99.5	0.5% Dry	Pass
34323	111	Lot 320	Layer 9 - Stage 3	FILL - Silty Clay	18-Sep-20	99.5	Omc	Pass
34423	112	Lot 309	Layer 6 - Stage 3	FILL - Silty Clay	24-Sep-20	100.0	0.5% Wet	Pass
34424	113	Lot 310	Layer 6 - Stage 3	FILL - Silty Clay	24-Sep-20	98.5	Omc	Pass
34425	114	Lot 311	Layer 6 - Stage 3	FILL - Silty Clay	24-Sep-20	98.0	Omc	Pass
34009	115	Lot 331	Layer 6 - Stage 3	FILL - Silty Clay	04-Sep-20	97.0	Omc	Pass

34010	116	Lot 330	Layer 6 - Stage 3	FILL - Silty Clay	04-Sep-20	97.5	0.5% Dry	Pass
34011	117	Lot 329	Layer 6 - Stage 3	FILL - Silty Clay	04-Sep-20	95.5	Omc	Pass
34012	118	Lot 328	Layer 6 - Stage 3	FILL - Silty Clay	04-Sep-20	95.0	Omc	Pass
34645	119	Lot 307	Layer 8 - Stage 3	FILL - Silty Clay	15-Oct-20	98.0	0.5% Wet	Pass
34646	120	Lot 308	Layer 8 - Stage 3	FILL - Silty Clay	15-Oct-20	98.0	0.5% Dry	Pass
34647	121	Lot 309	Layer 8 - Stage 3	FILL - Silty Clay	15-Oct-20	98.0	Omc	Pass
34651	122	Lot 318	Layer 1 - Stage 3	FILL - Silty Clay	16-Oct-20	97.5	Omc	Pass
34652	123	Lot 317	Layer 1 - Stage 3	FILL - Silty Clay	16-Oct-20	95.5	0.5% Wet	Pass
34653	124	Lot 311	Layer 1 - Stage 3	FILL - Silty Clay	16-Oct-20	96.5	0.5% Wet	Pass
34769	125	Lot 309	Layer 8 - Stage 3	FILL - Silty Clay	20-Oct-20	96.5	1.5% Dry	Pass
34770	126	Lot 310	Layer 8 - Stage 3	FILL - Silty Clay	20-Oct-20	98.5	1.5% Dry	Pass
34771	127	Lot 312	Layer 8 - Stage 3	FILL - Silty Clay	20-Oct-20	99.0	0.5% Wet	Pass
34772	128	Lot 309	Layer 9 - Stage 3	FILL - Silty Clay	21-Oct-20	99.5	Omc	Pass
34773	129	Lot 310	Layer 9 - Stage 3	FILL - Silty Clay	21-Oct-20	100.5	1.5% Dry	Pass
34774	130	Lot 311	Layer 9 - Stage 3	FILL - Silty Clay	21-Oct-20	98.5	1.5% Dry	Pass
34912	131	Lot 317	Layer 2 - Stage 3	FILL - Silty Clay	29-Oct-20	100.0	1.5% Dry	Pass
34913	132	Lot 316	Layer 2 - Stage 3	FILL - Silty Clay	29-Oct-20	97.0	1.5% Wet	Pass
34914	133	Lot 315	Layer 2 - Stage 3	FILL - Silty Clay	29-Oct-20	97.0	0.5% Wet	Pass
34915	134	Lot 311	Layer 2 - Stage 3	FILL - Silty Clay	30-Oct-20	97.5	1.5% Dry	Pass

34916	135	Lot 313	Layer 2 - Stage 3	FILL - Silty Clay	30-Oct-20	97.5	2% Dry	Pass
34917	136	Lot 314	Layer 2 - Stage 3	FILL - Silty Clay	30-Oct-20	100.0	0.5% Dry	Pass
34918	137	Lot 312	Layer 3 - Stage 3	FILL - Silty Clay	04-Nov-20	96.5	2% Dry	Pass
34919	138	Lot 313	Layer 3 - Stage 3	FILL - Silty Clay	04-Nov-20	99.5	2% Dry	Pass
34920	139	Lot 314	Layer 3 - Stage 3	FILL - Silty Clay	04-Nov-20	98.5	0.5% Dry	Pass
34921	140	Lot 302	Layer 7 - Stage 3	FILL - Silty Clay	05-Nov-20	97.0	1.5% Wet	Pass
34922	141	Lot 301	Layer 7 - Stage 3	FILL - Silty Clay	05-Nov-20	102.0	2% Dry	Pass
34923	142	Lot 303	Layer 7 - Stage 3	FILL - Silty Clay	05-Nov-20	97.5	Omc	Pass
34924	143	Lot 304	Layer 8 - Stage 3	FILL - Silty Clay	06-Nov-20	98.5	0.5% Dry	Pass
34925	144	Lot 305	Layer 8 - Stage 3	FILL - Silty Clay	06-Nov-20	97.5	2% Dry	Pass
34926	145	Lot 307	Layer 8 - Stage 3	FILL - Silty Clay	06-Nov-20	97.0	0.5% Dry	Pass
35042	146	Lot 301	Layer 8 - Stage 3	FILL - Silty Clay	09-Nov-20	96.0	Omc	Pass
35043	147	Lot 302	Layer 8 - Stage 3	FILL - Silty Clay	09-Nov-20	100.0	2% Dry	Pass
35044	148	Lot 303	Layer 8 - Stage 3	FILL - Silty Clay	09-Nov-20	98.5	2% Dry	Pass
35045	149	Lot 308	Layer 7 - Stage 3	FILL - Silty Clay	10-Nov-20	96.0	Omc	Pass
35046	150	Lot 309	Layer 7 - Stage 3	FILL - Silty Clay	10-Nov-20	95.5	Omc	Pass
35047	151	Lot 310	Layer 7 - Stage 3	FILL - Silty Clay	10-Nov-20	96.0	0.5% Dry	Pass
35048	152	Lot 311	Layer 7 - Stage 3	FILL - Silty Clay	10-Nov-20	99.5	2% Dry	Pass
35049	153	Lot 305	Layer 7 - Stage 3	FILL - Silty Clay	11-Nov-20	95.5	2% Dry	Pass

154	Lot 307	Layer 7 - Stage 3	FILL - Silty Clay	11-Nov-20	95.5	Omc	Pass
155	Lot 308	Layer 7 - Stage 3	FILL - Silty Clay	11-Nov-20	95.0	Omc	Pass
156	Lot 306	Layer 8 - Stage 3	FILL - Silty Clay	12-Nov-20	98.0	2% Dry	Pass
157	Lot 308	Layer 8 - Stage 3	FILL - Silty Clay	12-Nov-20	95.5	Omc	Pass
158	Lot 310	Layer 8 - Stage 3	FILL - Silty Clay	12-Nov-20	96.0	Omc	Pass
159	Lot 311	Layer 8 - Stage 3	FILL - Silty Clay	13-Nov-20	98.5	Omc	Pass
160	Lot 312	Layer 8 - Stage 3	FILL - Silty Clay	13-Nov-20	99.5	2% Dry	Pass
161	Lot 314	Layer 8 - Stage 3	FILL - Silty Clay	13-Nov-20	95.0	0.5% Dry	Pass
162	Lot 316	Layer 8 - Stage 3	FILL - Silty Clay	16-Nov-20	97.0	0.5% Dry	Pass
163	Lot 316	Layer 8 - Stage 3	FILL - Silty Clay	16-Nov-20	100.5	2% Dry	Pass
164	Lot 315	Layer 8 - Stage 3	FILL - Silty Clay	16-Nov-20	97.5	Omc	Pass
165	Lot 317	Layer 8 - Stage 3	FILL - Silty Clay	17-Nov-20	97.0	0.5% Dry	Pass
166	Lot 317	Layer 8 - Stage 3	FILL - Silty Clay	17-Nov-20	96.0	2% Dry	Pass
167	Lot 317	Layer 8 - Stage 3	FILL - Silty Clay	17-Nov-20	97.0	Omc	Pass
168	Lot 313	Layer 9 - Stage 3	FILL - Silty Clay	18-Nov-20	95.5	Omc	Pass
169	Lot 314	Layer 9 - Stage 3	FILL - Silty Clay	18-Nov-20	99.5	2% Dry	Pass
170	Lot 315	Layer 9 - Stage 3	FILL - Silty Clay	18-Nov-20	97.5	Omc	Pass
171	Lot 313	Layer 9 - Stage 3	FILL - Silty Clay	19-Nov-20	99.5	Omc	Pass
172	Lot 312	Layer 9 - Stage 3	FILL - Silty Clay	19-Nov-20	100.5	2% Dry	Pass
	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	155 Lot 308 156 Lot 306 157 Lot 308 158 Lot 310 159 Lot 311 160 Lot 312 161 Lot 314 162 Lot 316 163 Lot 316 164 Lot 315 165 Lot 317 166 Lot 317 167 Lot 317 168 Lot 313 169 Lot 314 170 Lot 315 171 Lot 313	155 Lot 308 Layer 7 - Stage 3 156 Lot 306 Layer 8 - Stage 3 157 Lot 308 Layer 8 - Stage 3 158 Lot 310 Layer 8 - Stage 3 159 Lot 311 Layer 8 - Stage 3 160 Lot 312 Layer 8 - Stage 3 161 Lot 314 Layer 8 - Stage 3 162 Lot 316 Layer 8 - Stage 3 163 Lot 316 Layer 8 - Stage 3 164 Lot 315 Layer 8 - Stage 3 165 Lot 317 Layer 8 - Stage 3 166 Lot 317 Layer 8 - Stage 3 167 Lot 317 Layer 8 - Stage 3 168 Lot 313 Layer 9 - Stage 3 169 Lot 314 Layer 9 - Stage 3 170 Lot 315 Layer 9 - Stage 3 171 Lot 313 Layer 9 - Stage 3	155 Lot 308 Layer 7 - Stage 3 FILL - Silty Clay 156 Lot 306 Layer 8 - Stage 3 FILL - Silty Clay 157 Lot 308 Layer 8 - Stage 3 FILL - Silty Clay 158 Lot 310 Layer 8 - Stage 3 FILL - Silty Clay 159 Lot 311 Layer 8 - Stage 3 FILL - Silty Clay 160 Lot 312 Layer 8 - Stage 3 FILL - Silty Clay 161 Lot 314 Layer 8 - Stage 3 FILL - Silty Clay 162 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 163 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 164 Lot 315 Layer 8 - Stage 3 FILL - Silty Clay 165 Lot 317 Layer 8 - Stage 3 FILL - Silty Clay 166 Lot 317 Layer 8 - Stage 3 FILL - Silty Clay 167 Lot 317 Layer 8 - Stage 3 FILL - Silty Clay 168 Lot 313 Layer 9 - Stage 3 FILL - Silty Clay 169 Lot 314 Layer 9 - Stage 3 FILL - Silty Clay 170 Lot 315 Layer 9 - Stage 3 FILL - Silty Clay	155 Lot 308 Layer 7 - Stage 3 FILL - Silty Clay 11-Nov-20 156 Lot 306 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 157 Lot 308 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 158 Lot 310 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 159 Lot 311 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 160 Lot 312 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 161 Lot 314 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 162 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 163 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 164 Lot 315 Layer 8 - Stage 3 FILL - Silty Clay 17-Nov-20 165 Lot 317 Layer 8 - Stage 3 FILL - Silty Clay 17-Nov-20 166 Lot 317 Layer 8 - Stage 3 FILL - Silty Clay 17-Nov-20 168 Lot 313 Layer 9 - Stage 3 <t< td=""><td>155 Lot 308 Layer 7 - Stage 3 FILL - Silty Clay 11-Nov-20 95.0 156 Lot 306 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 98.0 157 Lot 308 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 95.5 158 Lot 310 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 96.0 159 Lot 311 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 98.5 160 Lot 312 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 99.5 161 Lot 314 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.0 162 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.0 163 Lot 315 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.5 165 Lot 317 Layer 8 - Stage 3 FILL - Silty Clay 17-Nov-20 97.0 166 Lot 317 Layer 8 - Stage 3 FILL - Silty Clay 17-Nov-20 97.0 <td< td=""><td>155 Lot 308 Layer 7 - Stage 3 FILL - Silty Clay 11-Nov-20 95.0 Omc 156 Lot 306 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 98.0 2% Dry 157 Lot 308 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 95.5 Omc 158 Lot 310 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 96.0 Omc 159 Lot 311 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 98.5 Omc 160 Lot 312 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 99.5 2% Dry 161 Lot 314 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.0 0.5% Dry 162 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.0 0.5% Dry 163 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.5 Omc 164 Lot 315 Layer 8 - Stage 3 FILL - Silty Clay 17-Nov-20 97.0 <</td></td<></td></t<>	155 Lot 308 Layer 7 - Stage 3 FILL - Silty Clay 11-Nov-20 95.0 156 Lot 306 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 98.0 157 Lot 308 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 95.5 158 Lot 310 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 96.0 159 Lot 311 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 98.5 160 Lot 312 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 99.5 161 Lot 314 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.0 162 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.0 163 Lot 315 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.5 165 Lot 317 Layer 8 - Stage 3 FILL - Silty Clay 17-Nov-20 97.0 166 Lot 317 Layer 8 - Stage 3 FILL - Silty Clay 17-Nov-20 97.0 <td< td=""><td>155 Lot 308 Layer 7 - Stage 3 FILL - Silty Clay 11-Nov-20 95.0 Omc 156 Lot 306 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 98.0 2% Dry 157 Lot 308 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 95.5 Omc 158 Lot 310 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 96.0 Omc 159 Lot 311 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 98.5 Omc 160 Lot 312 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 99.5 2% Dry 161 Lot 314 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.0 0.5% Dry 162 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.0 0.5% Dry 163 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.5 Omc 164 Lot 315 Layer 8 - Stage 3 FILL - Silty Clay 17-Nov-20 97.0 <</td></td<>	155 Lot 308 Layer 7 - Stage 3 FILL - Silty Clay 11-Nov-20 95.0 Omc 156 Lot 306 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 98.0 2% Dry 157 Lot 308 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 95.5 Omc 158 Lot 310 Layer 8 - Stage 3 FILL - Silty Clay 12-Nov-20 96.0 Omc 159 Lot 311 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 98.5 Omc 160 Lot 312 Layer 8 - Stage 3 FILL - Silty Clay 13-Nov-20 99.5 2% Dry 161 Lot 314 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.0 0.5% Dry 162 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.0 0.5% Dry 163 Lot 316 Layer 8 - Stage 3 FILL - Silty Clay 16-Nov-20 97.5 Omc 164 Lot 315 Layer 8 - Stage 3 FILL - Silty Clay 17-Nov-20 97.0 <

35499	173	Lot 313	Layer 9 - Stage 3	FILL - Silty Clay	19-Nov-20	99.5	0.5% Dry	Pass
35500	174	Lot 309	Layer 9 - Stage 3	FILL - Silty Clay	20-Nov-20	99.0	Omc	Pass
35501	175	Lot 310	Layer 9 - Stage 3	FILL - Silty Clay	20-Nov-20	99.0	2% Dry	Pass
35502	176	Lot 311	Layer 9 - Stage 3	FILL - Silty Clay	20-Nov-20	99.5	0.5% Dry	Pass
35503	177	Lot 307	Layer 9 - Stage 3	FILL - Silty Clay	26-Nov-20	96.0	0.5% Dry	Pass
35504	178	Lot 307	Layer 9 - Stage 3	FILL - Silty Clay	26-Nov-20	97.0	2% Dry	Pass
35505	179	Lot 308	Layer 9 - Stage 3	FILL - Silty Clay	26-Nov-20	99.5	0.5% Dry	Pass
35506	180	Lot 317	Layer 8 - Stage 3	FILL - Silty Clay	27-Nov-20	98.5	Omc	Pass
35507	181	Lot 316	Layer 8 - Stage 3	FILL - Silty Clay	27-Nov-20	98.0	2% Dry	Pass
35508	182	Lot 315	Layer 8 - Stage 3	FILL - Silty Clay	27-Nov-20	100.0	0.5% Dry	Pass
35648	183	Lot 316	Layer 9 - Stage 3	FILL - Silty Clay	03-Dec-20	96.0	Omc	Pass
35649	184	Lot 317	Layer 9 - Stage 3	FILL - Silty Clay	03-Dec-20	99.5	2% Dry	Pass
35650	185	Lot 318	Layer 9 - Stage 3	FILL - Silty Clay	03-Dec-20	100.5	0.5% Dry	Pass
35651	186	Lot 323	Layer 7 - Stage 3	FILL - Silty Clay	07-Dec-20	98.5	Omc	Pass
35652	187	Lot 322	Layer 7 - Stage 3	FILL - Silty Clay	07-Dec-20	100.5	2% Dry	Pass
35653	188	Lot 320	Layer 7 - Stage 3	FILL - Silty Clay	07-Dec-20	98.5	0.5% Wet	Pass
35654	189	Lot 327	Layer 4 - Stage 3	FILL - Silty Clay	08-Dec-20	102.0	Omc	Pass
35655	190	Lot 326	Layer 4 - Stage 3	FILL - Silty Clay	08-Dec-20	101.0	0.5% Wet	Pass
35656	191	Lot 325	Layer 4 - Stage 3	FILL - Silty Clay	08-Dec-20	96.5	Omc	Pass

35657	192	Lot 311	Layer 9 - Stage 3	FILL - Silty Clay	09-Dec-20	95.0	Omc	Pass
35658	193	Lot 312	Layer 9 - Stage 3	FILL - Silty Clay	09-Dec-20	96.5	Omc	Pass
35659	194	Lot 313	Layer 9 - Stage 3	FILL - Silty Clay	09-Dec-20	96.0	Omc	Pass
35660	195	Lot 312	Layer 9 - Stage 3	FILL - Silty Clay	10-Dec-20	95.0	0.5% Dry	Pass
35661	196	Lot 313	Layer 9 - Stage 3	FILL - Silty Clay	10-Dec-20	95.5	Omc	Pass
35662	197	Lot 314	Layer 9 - Stage 3	FILL - Silty Clay	10-Dec-20	98.5	Omc	Pass
40047	198	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	97.5	0.5% Dry	Pass
40048	199	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	97.0	2% Dry	Pass
40049	200	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	100.0	2% Dry	Pass
40050	201	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	97.5	0.5% Wet	Pass
40051	202	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	99.0	Omc	Pass
40052	203	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	100.0	2% Dry	Pass
40053	204	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	95.5	Omc	Pass
40054	205	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	98.5	Omc	Pass
40055	206	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	97.0	Omc	Pass
40056	207	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	95.0	Omc	Pass
40057	208	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	96.0	2% Dry	Pass
40058	209	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	98.5	2% Dry	Pass
40059	210	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	97.5	2% Dry	Pass

40060	211	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	96.0	Omc	Pass
40061	212	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	97.5	Omc	Pass
40062	213	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	97.5	Omc	Pass
40063	214	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	102.0	0.5% Wet	Pass
40064	215	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	96.5	0.5% Wet	Pass
40065	216	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	99.5	2% Dry	Pass
40066	217	Reserve	Stage 3	FILL - Silty Clay	03-Dec-20	99.0	Omc	Pass

APPENDIX 3 – NATA LAB RESULTS

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03 -1

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan Vic

Report Number:

Page:

Report Date: 29/04/2020

Request No: -

Testing performed and reported at our Main Laboratory

					٠.	 •		
Sample No.		31550	31551	31552				
ID No.		1	2	3				
Date Sampled		17/04/2020	17/04/2020	17/04/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		17/04/2020	17/04/2020	17/04/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 315	Lot 316	Lot 318				
Sample Location		Layer 1	Layer 1	Layer 1				
		South of Lot	North of Lot	South of Lot				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	5	4	6				
Field Wet Density	t/m³	1.90	1.91	1.93				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³		2.00	2.03				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	omc	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	95.5	96.0	95.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA
ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd
Project: Newbridge South Stage 3

Newbridge South Stage 3 Wallan Vic

Location:

Report Number:

Report Date:

6387.03 - 2 29/04/2020

Request No:

Testing performed and reported at our Main Laboratory

Page: 1 of 1

Sample No.		31597	31598	31599	31600	31601			
ID No.		1	2	3	4	5			
Date Sampled		21/04/2020	21/04/2020	21/04/2020	21/04/2020	21/04/2020			
Time Sampled		am/pm	am/pm	am/pm	am/pm	am/pm			
Date Tested		22/04/2020	22/04/2020	22/04/2020	22/04/2020	22/04/2020			
Material Source		Site Derived	Site Derived	Site Derived	Site Derived	Site Derived			
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay			
To Be Used As		Backfill	Backfill	Backfill	Backfill	Backfill			
		Newbridge Blvd	Newbridge Blvd	Lot 329	Newbridge Blvd	Newbridge Blvd			
		Layer 1	Layer 1	Layer 1	Layer 1	Layer 1			
		Centre of Lot	Centre of Lot	North of Lot	Centre of Lot	Centre of Lot			
Layer Depth	mm	300	300	300	300	300			
Test Depth	mm	275	275	275	275	275			

			ſ						
Max Size	mm	19	19	19	19	19			
Oversize Wet	%	5	3	8	5	4			
Field Wet Density	t/m³	2.00	2.09	1.94	1.89	1.87			
Field Moisture Content	%	-	-	-	-	-			
PCWD or APCWD*	t/m³	2.03	2.10	2.02	2.00	1.89			

PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (dry)	0.5% (dry)	omc	1.5% (dry)			
Compactive Effort		Standard	Standard	Standard	Standard	Standard			
Hilf Density Ratio	%	99.0	99.0	96.0	95.0	99.0			
Min Hilf Density Ratio	%	95	95	95	95	95			

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA
ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Wallan Vic

Universal Corporation Pty Ltd

Newbridge South Stage 3

HILF DENSITY RATIO REPORT

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

6387.03 - 3 Report Number:

Report Date: 29/04/2020

Request No:

Page: of

Testing performed and reported at our Main Laboratory

Sample No.		31645	31646	31647	31648	31649			
ID No.		1	2	3	4	5			
Date Sampled		22/04/2020	22/04/2020	22/04/2020	22/04/2020	22/04/2020			
Time Sampled		am/pm	am/pm	am/pm	am/pm	am/pm			
Date Tested		23/04/2020	23/04/2020	23/04/2020	23/04/2020	23/04/2020			
Material Source		Site Derived	Site Derived	Site Derived	Site Derived	Site Derived			
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay			
To Be Used As		Backfill	Backfill	Backfill	Backfill	Backfill			
		Lot 330	Lot 329	Lot 332	Lot 331	Lot 332			
		Layer 1	Layer 1	Layer 2	Layer 2	Layer 3			
		Centre of Lot	Centre of Lot	South of Lot	North of Lot	East of Lot			
Layer Depth	mm	300	300	300	300	300			
Test Depth	mm	275	275	275	275	275			

Max Size	mm	19	19	19	19	19			
Oversize Wet	%	6	4	5	7	5			
Field Wet Density	t/m³	1.97	2.00	1.96	2.01	2.02			
Field Moisture Content	%	-	-	-	-	-			
PCWD or APCWD*	t/m³	2.01	2.10	2.02	2.01	2.02			

PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (dry)	omc	omc	1.5% (dry)			
Compactive Effort		Standard	Standard	Standard	Standard	Standard			
Hilf Density Ratio	%	98.0	95.5	97.0	100.0	100.0			
Min Hilf Density Ratio	%	95	95	95	95	95			

Note:

Customer:

Project:

Location:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan Vic Report Number:

Report Date:

6387.03 - 4 29/04/2020

Request No:

Page: of

Testing performed and reported at our Main Laboratory

Sample No.		31741	31742	31743				
ID No.		1	2	3				
Date Sampled		24/04/2020	24/04/2020	24/04/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		24/04/2020	24/04/2020	24/04/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 307	Lot 331	Lot 332				
Sample Location		Layer 1	Layer 3	Layer 3				
		South of Lot	North of Lot	North of Lot				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	6	6	4				
Field Wet Density	t/m³	2.01	1.98	1.96				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.00	2.00	2.02				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	0.5% (dry)	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	100.5	99.0	97.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

AS1289 5.8.1, 5.7.1, 2.1.1 Test Methods: Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Report Sheet No. CGS-700 Issued on 31-10-2017

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03 - 5

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan Vic

Report Number:

Report Date: 4/05/2020

Request No:

Testing performed and reported at our Main Laboratory

					resuring performed and	reported at our Main Lab	ioratory		Page. I	OI I
Sample No.		31765	31766	31767						
ID No.		1	2	3						
Date Sampled		29/04/2020	29/04/2020	29/04/2020						
Time Sampled		am/pm	am/pm	am/pm						
Date Tested		29/04/2020	29/04/2020	29/04/2020						
Material Source		Imported	Imported	Imported						
Material Description		Silty Clay	Silty Clay	Silty Clay						
To Be Used As		Backfill	Backfill	Backfill						
		Lot 314	Lot 312	Lot 311						
Sample Location		Layer 1	Layer 1	Layer 1						
		North of Lot	South of Lot	West of Lot						
Layer Depth	mm	300	300	300						
Test Depth	mm	275	275	275						

Max Size	mm	19	19	19				
Oversize Wet	%	4	5	3				
Field Wet Density	t/m³	2.14	2.10	2.08				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.14	2.10	2.11				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (dry)	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	100.0	100.0	98.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA
ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Newbridge South Stage 3

Location: Wallan Vic

Project:

Report Number:

Report Date:

6387.03 - 6 20/05/2020

Request No:

Testing performed and reported at our Main Laboratory

Page: 1 of 1

Sample No.		31591	31592	31593				
ID No.		1	2	3				
Date Sampled		20/04/2020	20/04/2020	20/04/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		7/05/2020	7/05/2020	7/05/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 317	Lot 318	Lot 319				
Sample Location		South of Lot	North of Lot	South of Lot				
		Layer 2	Layer 2	Layer 2				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	14	0	0				
Field Wet Density	t/m³	2.01	1.93	1.98				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.02	1.94	2.04				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (wet)	1.5% (wet)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	99.5	99.5	97.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA
ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Location:

HILF DENSITY RATIO REPORT

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Report Number:

Report Date:

Request No:

Page:

6387.03 - 7

20/05/2020

of

Customer: Universal Corporation Pty Ltd

Wallan Vic

Project: Newbridge South Stage 3

Testing performed and reported at our Main Laboratory

Sample No.		31674	31675	31676				
ID No.		1	2	3				
Date Sampled		23/04/2020	23/04/2020	23/04/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		15/05/2020	15/05/2020	15/05/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 304	Lot 307	Lot 309				
Sample Location		C/L of Lot	North of Lot	South of Lot				
		Layer 2	Layer 2	Layer 2				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.06	2.01	1.91				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.12	2.07	1.95				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	omc	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	97.0	97.0	98.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA
ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Location:

HILF DENSITY RATIO REPORT

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

of

Customer: Universal Corporation Pty Ltd

Wallan Vic

Project: Newbridge South Stage 3

 Report Number:
 6387.03 - 8

 Report Date:
 20/05/2020

Page:

Request No:

Testing performed and reported at our Main Laboratory

Sample No.		31672	31673	31674				
ID No.		1	2	3				
Date Sampled		27/04/2020	27/04/2020	27/04/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		15/05/2020	15/05/2020	15/05/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 326	Lot 325	Lot 324				
Sample Location		South of Lot	Centre of Lot	Centre of Lot				
		Layer 1	Layer 1	Layer 1				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	8	0	0				
Field Wet Density	t/m³	1.97	2.01	2.01				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.01	2.08	2.08				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	omc	0.5% (wet)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	98.0	96.5	96.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA
ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Report Sheet No. CGS-700 Issued on 31-10-2017

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03 - 9

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan Vic

Report Number:

Page:

Report Date: 20/05/2020

Request No:

Testing performed and reported at our Main Laboratory

Sample No.		31932	31933	31934				
ID No.		1	2	3				
Date Sampled		27/04/2020	27/04/2020	27/04/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		15/05/2020	15/05/2020	15/05/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 325	Lot 327	Lot 326				
Sample Location		South of Lot	North of Lot	South of Lot				
		Layer 3	Layer 3	Layer 3				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.02	2.01	1.98				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³		2.10	2.05				

PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	omc	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	96.5	95.5	97.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA
ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan Vic Report Number:

Page:

6387.03 -10 Report Date: 20/05/2020

Request No:

Testing performed and reported at our Main Laboratory

Sample No.		31949	31950	31951				
ID No.		1	2	3				
Date Sampled		6/05/2020	6/05/2020	6/05/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		15/05/2020	15/05/2020	15/05/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 325	Lot 327	Lot 326				
Sample Location		South of Lot	North of Lot	South of Lot				
		Layer 4	Layer 4	Layer 4				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	15	0	0				
Field Wet Density	t/m³	2.09	1.97	1.98				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.14	2.07	2.08				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (dry)	0.5% (dry)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	97.5	95.0	95.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

AS1289 5.8.1, 5.7.1, 2.1.1 Test Methods: Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL

Approved Signatory

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690 e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd Project:

Newbridge South Stage 3

Location: Wallan Vic Report Number:

6387.03 -11 Report Date: 20/05/2020

Request No:

Testing performed and reported at our Main Laboratory

Page: of

Sample No.		31958	31959	31960				
ID No.		1	2	3				
Date Sampled		7/05/2020	7/05/2020	7/05/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		15/05/2020	15/05/2020	15/05/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 324	Lot 325	Newbridge Blvd				
Sample Location		South of Lot	North of Lot	Next to Lot 324				
		Layer 5	Layer 5	Layer 5				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	1.98	2.04	1.99				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	1.99	2.10	2.03				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	omc	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	99.5	97.0	98.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

AS1289 5.8.1, 5.7.1, 2.1.1 Test Methods: Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan Vic

Report Number:

6387.03-12

Report Date: Request No: 20/05/2020

Testing performed and reported at our Main Laboratory

Page: 1 of 1

Sample No.		32033	32034	32035				
ID No.		1	2	3				
Date Sampled		12/05/2020	12/05/2020	12/05/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		13/05/2020	13/05/2020	13/05/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 322	Lot 323	Lot 324				
Sample Location		South of Lot	North of Lot	South of Lot				
		Layer 4	Layer 4	Layer 5				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	1.96	2.00	1.97				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.03	2.08	2.06				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	omc	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	96.5	96.5	95.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690 e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd Project:

Newbridge South Stage 3

Location: Wallan Vic Report Number:

6387.03-13 Report Date: 20/05/2020

Request No:

Testing performed and reported at our Main Laboratory

Page: of

Sample No.		31988	31989	31990				
ID No.		1	2	3				
Date Sampled		8/05/2020	8/05/2020	8/05/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		13/05/2020	13/05/2020	13/05/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 329	Lot 328	Reserve				
Sample Location		South of Lot	North of Lot	Near lot 328				
		Layer 5	Layer 5	Layer 5				
Layer Depth	mm	200	200	200				
Test Depth	mm	175	175	175				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.03	1.99	2.07				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.10	2.05	2.15				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (dry)	0.5% (dry)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	96.5	97.0	96.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

AS1289 5.8.1, 5.7.1, 2.1.1 Test Methods: Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690 e: info@continentgeotech.com.au

6387.03-14

Customer: Universal Corporation Pty Ltd

Newbridge South Stage 3

Location: Wallan Vic

Project:

Report Number:

Report Date: 20/05/2020

Request No:

					Testing performed and	reported at our Main Lab	oratory		Page: 1	of 1
Sample No.		32081	32082	32083						
ID No.		1	2	3						
Date Sampled		15/05/2020	15/05/2020	15/05/2020						
Time Sampled		am/pm	am/pm	am/pm						
Date Tested		18/05/2020	18/05/2020	18/05/2020						
Material Source		Imported	Imported	Imported						
Material Description		Silty Clay	Silty Clay	Silty Clay						
To Be Used As		Backfill	Backfill	Backfill						
		Lot 323	Lot 324	Lot 325						
Sample Location		North of Lot	North of Lot	North of Lot						
		Layer 5	Layer 6	Layer 5						
Layer Depth	mm	200	200	200						
Test Depth	mm	175	175	175						

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	1.93	1.96	1.96				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	1.97	1.98	2.04				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	1% (wet)	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	98.0	99.0	96.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

AS1289 5.8.1, 5.7.1, 2.1.1 Test Methods: Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690 e: info@continentgeotech.com.au

6387.03-15

20/05/2020

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3 Location: Wallan Vic

Testing performed and reported at our Main Laboratory

Report Date: Request No:

Report Number:

Page: of

Sample No.		32162	32163	32164				
ID No.		1	2	3				
Date Sampled		18/05/2020	18/05/2020	18/05/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		19/05/2020	19/05/2020	19/05/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 304	Lot 305	Lot 306				
Sample Location		Centre of Lot	North of Lot	South of Lot				
		Layer 4	Layer 4	Layer 4				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	1.93	2.00	2.01				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	1.99	2.03	2.10				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	1% (wet)	0.5% (dry)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	97.0	98.5	95.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

AS1289 5.8.1, 5.7.1, 2.1.1 Test Methods: Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd Project:

Newbridge South Stage 3

Location: Wallan Vic Report Number:

6387.03-16 Report Date: 20/05/2020

Request No:

Testing performed and reported at our Main Laboratory

Page: of

Sample No.		32186	32187	32188				
ID No.		1	2	3				
Date Sampled		19/05/2020	19/05/2020	19/05/2020				
Time Sampled		am/pm	am/pm	am/pm				
Date Tested		20/05/2020	20/05/2020	20/05/2020				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 304	Lot 305	Lot 306				
Sample Location		South of Lot	North of Lot	South of Lot				
		Layer 5	Layer 5	Layer 5				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	12	0	0				
Field Wet Density	t/m³	1.93	1.98	2.02				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.00	2.03	2.07				

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (wet)	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	96.5	97.5	97.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

AS1289 5.8.1, 5.7.1, 2.1.1 Test Methods: Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL

Approved Signatory

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

NATA Accreditation No. 19945

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Newbridge South Stage 3

Location: Wallan, Vic

Project:

Report Number:

Report Date:

6387.03-17 26/07/2020

Request No:

					Testing performed	d and reported at our	Main Laboratory		Page:	1	of	1
Sample No.		33470	33471	33472								
ID No.		1	2	3								
Test Date		16/07/2020	16/07/2020	16/07/2020								
Test Time		am-pm	am-pm	am-pm								
Material Source		Imported	Imported	Imported								
Material Description		Silty Clay	Silty Clay	Silty Clay								
To Be Used As		Backfill	Backfill	Backfill								
		Lot 323	Lot 324	Lot 325								
Sample Location		South of Lot	South of Lot	East of Lot								
		Layer 4	Layer 4	Layer 4								
Layer Depth	mm	300	300	300								
Test Depth	mm	275	275	275								
Max Size	mm	19	19	19								
Oversize Wet	%	9	11	10								
Field Wet Density	t/m³	2.10	2.08	2.14								
Field Moisture Content	%	-	-	-								
PCWD or APCWD*	t/m³	2.15	2.13	2.19								
*PCWD - Peak Converted Wet De	ensity , APCW	/D - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD	and Moisture Variation is	Adjusted						
Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (dry)	0.5% (dry)								
Compactive Effort		Standard	Standard	Standard								
Hilf Density Ratio	%	98.0	97.5	97.5								
Min Hilf Density Ratio	%	95	95	95								

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 AS1289 1.2.1 6.4(b) Sampling Test Method:

TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer:

Newbridge South Stage 3 Project:

Location: Wallan, Vic Report Number:

Report Date:

6387.03-18 26/07/2020

Request No:

Testing performed and reported at our Main Laboratory

Page: of Sample No. 33520 33521 33522 2 3 1 ID No. 17/07/2020 17/07/2020 17/07/2020 Test Date am-pm am-pm am-pm Test Time Imported Imported Imported Material Source Silty Clay Silty Clay Silty Clay Material Description Backfill Backfill Backfill To Be Used As Lot 320 Lot 321 Lot 319 Sample Location West of Lot South of Lot West of Lot Layer 1 Layer 1 Layer 1 300 300 300 mm Layer Depth 275 mm 275 275 Test Depth 19 19 19 mm Max Size % 11 10 11 Oversize Wet 2.05 t/m³ 2.03 2.08 Field Wet Density % Field Moisture Content t/m³ 2.13 2.11 2.15 PCWD or APCWD*

*PCWD - Peak Converted Wet Density . APC	WD - Adjusted Peak Conve	rted Wet Densitv. If Oversize	e material present PCWD a	and Moisture Variation is Ad	

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (wet)	omc	0.5% (dry)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	95.0	98.5	95.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 AS1289 1.2.1 6.4(b) Sampling Test Method:

TECHNICAL

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number:

Report Date:

6387.03-19 26/07/2020

Request No:

					Testing performed a	and reported at our M	ain Laboratory			Page: 1	of	1
Sample No.		33523	33524	33525	33526							
ID No.		1	2	3	4							
Test Date		20/07/2020	20/07/2020	20/07/2020	20/07/2020							
Test Time		am-pm	am-pm	am-pm	am-pm							
Material Source		Imported	Imported	Imported	Imported							
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay							
To Be Used As		Backfill	Backfill	Backfill	Backfill							
		Lot 319	Lot 319	Lot 318	Lot 318							
Sample Location		East of Lot	South of Lot	East of Lot	South of Lot							
		Layer 1	Layer 1	Layer 1	Layer 1							
Layer Depth	mm	300	300	300	300							
Test Depth	mm	275	275	275	275							
								•				
Max Size	mm	19	19	19	19							
Oversize Wet	%	10	12	11	9							
Field Wet Density	t/m³	2.04	2.04	2.04	2.07							
Field Moisture Content	%	-	-	-	-							
PCWD or APCWD*	t/m³	2.11	2.09	2.10	2.15							
*PCWD - Peak Converted Wet Der	nsity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	and Moisture Variation is A	ljusted		•	•	•		
Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (wet)	omc	2% (dry)	omc							
Compactive Effort		Standard	Standard	Standard	Standard							
Hilf Density Ratio	%	96.5	97.5	97.0	96.0							
Min Hilf Density Ratio	%	95	95	95	95							
Note:												

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 AS1289 1.2.1 6.4(b) Sampling Test Method:

TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03-20

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

Page:

Report Date: 27/07/2020

Request No:

Testing performed and reported at our Main Laboratory

Sample No.		33527	33528	33529	33530					
ID No.		1	2	3	4					
Test Date		21/07/2020	21/07/2020	21/07/2020	21/07/2020					
Test Time		am-pm	am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill	Backfill					
		Lot 323	Lot 322	Lot 321	Lot 320					
Sample Location		North-West of Lot	North-West of Lot	North-West of Lot	North-West of Lot					
		Layer 4	Layer 4	Layer 4	Layer 4					
Layer Depth	mm	300	300	300	300					
Test Depth	mm	275	275	275	275					
Max Size	mm	19	19	19	19					
Oversize Wet	%	7	12	14	0					
Field Wet Density	t/m³	2.06	2.04	2.00	2.05					
Field Moisture Content	%	-	-	-	-					
PCWD or APCWD*	t/m³	2.09	2.11	2.08	2.09					
*PCWD - Peak Converted Wet Dei	nsity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	nd Moisture Variation is Adj	usted	•	•	•	
Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (wet)	0.5% (dry)	omc	omc					
Compactive Effort		Standard	Standard	Standard	Standard					
Hilf Density Ratio	%	98.0	96.5	96.0	98.0					
Min Hilf Density Ratio	%	95	95	95	95					

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang

NATA Accreditation No. 19945

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number:

6387.03-21 27/07/2020

Request No:

Report Date:

					Testing performed a	ind reported at our M	lain Laboratory		Page:	1	of	1
Sample No.		33599	33600	33601	33602							
ID No.		1	2	3	4							
Test Date		22/07/2020	22/07/2020	22/07/2020	22/07/2020							
Test Time		am-pm	am-pm	am-pm	am-pm							
Material Source		Imported	Imported	Imported	Imported							
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay							
To Be Used As		Backfill	Backfill	Backfill	Backfill							
		Lot 327	Lot 326	Lot 325	Lot 324							
Sample Location		South-East of Lot	South-East of Lot	South of Lot	North of Lot							
		Layer 3	Layer 3	Layer 3	Layer 3							
Layer Depth	mm	300	300	300	300							
Test Depth	mm	275	275	275	275							
Max Size	mm	19	19	19	19							
Oversize Wet	%	10	15	9	11							
Field Wet Density	t/m³	2.01	2.06	2.06	2.02							
Field Moisture Content	%	-	-	-	-							
PCWD or APCWD*	t/m³	2.07	2.12	2.10	2.10							
*PCWD - Peak Converted Wet Del	nsity , APCI	ND - Adjusted Peak Conver	rted Wet Density, If Oversize	e material present PCWD a	and Moisture Variation is A	ljusted						
Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (wet)	omc	2% (dry)	2% (dry)							
Compactive Effort		Standard	Standard	Standard	Standard							
Hilf Density Ratio	%	97.0	97.5	98.0	96.5							
Min Hilf Density Ratio	%	95	95	95	95							

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 AS1289 1.2.1 6.4(b) Sampling Test Method:

TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Newbridge South Stage 3

Location: Wallan, Vic

Project:

Report Number:

27/07/2020

6387.03-22

of

Report Date: Request No:

Page:

.....

Testing performed and reported at our Main Laboratory

Sample No.		33603	33604	33605					
D No.		1	2	3					
Test Date		23/07/2020	23/07/2020	23/07/2020					
Test Time		am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill					
		Lot 323	Lot 322	Lot 321					
Sample Location		West of Lot	West of Lot	East of Lot					
		Layer 4	Layer 4	Layer 4					
Layer Depth	mm	300	300	300					
Test Depth	mm	275	275	275					
Max Size	mm	19	19	19					
Oversize Wet	%	12	0	8					
Field Wet Density	t/m³	2.01	2.08	1.98					
Field Moisture Content	%	-	-	-					
PCWD or APCWD*	t/m³	2.05	2.11	2.08					
PCWD - Peak Converted Wet Dei	nsity , APCN	/D - Adjusted Peak Conve	rted Wet Density, If Oversiz	re material present PCWD a	and Moisture Variation is A	Adjusted			
Moisture Variation or Adjusted* (of OMC)	t/m³	omc	omc	omc					
Compactive Effort		Standard	Standard	Standard					
Hilf Density Ratio	%	98.0	98.5	95.5					
•	%	95	95	95					1

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number:

Report Date: 27/07/2020

6387.03-23

of

Request No:

Page:

Testing performed and reported at our Main Laboratory

Sample No.		33606	33607	33608					
ID No.		1	2	3					
Test Date		24/07/2020	24/07/2020	24/07/2020					
Test Time		am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill					
		Lot 323	Lot 322	Lot 321					
Sample Location		West of Lot	West of Lot	East of Lot					
		Layer 5	Layer 5	Layer 5					
Layer Depth	mm	300	300	300					
Test Depth	mm	275	275	275					
Max Size	mm	19	19	19					
Oversize Wet	%	9	10	8					
Field Wet Density	t/m³	2.04	2.09	2.03					
Field Moisture Content	%	-	-	-					
PCWD or APCWD*	t/m³	2.11	2.14	2.08					
*PCWD - Peak Converted Wet De	nsity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	nd Moisture Variation is Ad	ljusted			
Moisture Variation or Adjusted* (of OMC)	t/m³	1.5% (wet)	omc	0.5% (dry)					
Compactive Effort		Standard	Standard	Standard					
Hilf Density Ratio	%	96.5	97.5	97.5					
Min Hilf Density Ratio	%	95	95	95					

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 AS1289 1.2.1 6.4(b) Sampling Test Method:

NATA TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Project:

Location:

HILF DENSITY RATIO REPORT

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

of

Customer: Universal Corporation Pty Ltd

Newbridge South Stage 3

Wallan, Vic

Report Number:

Page:

6387.03-24 Report Date: 5/08/2020

Request No:

Testing performed and reported at our Main Laboratory

Cample No.		33745	33746	33747			1		
Sample No.		33/45							
ID No.		1	2	3					
Test Date		31/07/2020	31/07/2020	31/07/2020					
Test Time		am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill					
		Lot 330	Lot 329	Lot 328					
Sample Location		West of Lot	West of Lot	West of Lot					
		Layer 6	Layer 6	Layer 6					
Layer Depth	mm	300	300	300					
Test Depth	mm	275	275	275					
Max Size	mm	19	19	19					
Oversize Wet	%	11	9	11					
Field Wet Density	t/m³	2.02	2.06	2.05					
Field Moisture Content	%	-	-	-					
PCWD or APCWD*	t/m³	2.08	2.14	2.10					
*PCWD - Peak Converted Wet Den	sity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	nd Moisture Variation is A	djusted			
Moisture Variation or Adjusted* (of OMC)	t/m³	1.5% (dry)	omc	1.5% (dry)					
Compactive Effort		Standard	Standard	Standard					
Hilf Density Ratio	%	97.5	96.5	97.5					
Min Hilf Density Ratio	%	95	95	95					

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 AS1289 1.2.1 6.4(b) Sampling Test Method:

TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

Report Date:

Page:

6387.03-26 9/09/2020

of

Request No:

Testing performed and reported at our Main Laboratory

				-	resting performed a		,			rage.	0 1
Sample No.		34001	34002	34003	34004						
ID No.		1	2	3	4						
Test Date		2/09/2020	2/09/2020	2/09/2020	2/09/2020						
Test Time		am-pm	am-pm	am-pm	am-pm						
Material Source		Imported	Imported	Imported	Imported						
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay						
To Be Used As		Backfill	Backfill	Backfill	Backfill						
		Lot 332	Lot 331	Lot 330	Lot 329						
Sample Location		Centre of Lot	West of Lot	West of Lot	West of Lot						
		Layer 6	Layer 6	Layer 6	Layer 6						
Layer Depth	mm	300	300	300	300						
Test Depth	mm	275	275	275	275						
Max Size	mm	19	19	19	19						
Oversize Wet	%	10	0	0	0						
Field Wet Density	t/m³	2.02	2.07	2.03	2.08						
Field Moisture Content	%	-	-	-	-						
PCWD or APCWD*	t/m³	2.08	2.13	2.13	2.15						
*PCWD - Peak Converted Wet De	nsity , APCV	/D - Adjusted Peak Conver	ted Wet Density, If Oversiz	e material present PCWD a	nd Moisture Variation is A	djusted		•	•	•	
Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (wet)	omc	0.5% (wet)	0.5% (wet)						
Compactive Effort		Standard	Standard	Standard	Standard						
Hilf Density Ratio	%	97.0	97.0	95.0	97.0						
Min Hilf Density Ratio	%	95	95	95	95						

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

6387.03-27

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number:

Report Date: 9/09/2020

Request No:

					Testing performed a	and reported at our Ma	ain Laboratory		Page:	of	1
Sample No.		34005	34006	34007	34008						
ID No.		1	2	3	4						
Test Date		3/09/2020	3/09/2020	3/09/2020	3/09/2020						
Test Time		am-pm	am-pm	am-pm	am-pm						
Material Source		Imported	Imported	Imported	Imported						
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay						
To Be Used As		Backfill	Backfill	Backfill	Backfill						
		Lot 329	Lot 330	Lot 321	Lot 322						
Sample Location		East of Lot	East of Lot	East of Lot	East of Lot						
		Layer 6	Layer 6	Layer 6	Layer 6						
Layer Depth	mm	300	300	300	300						
Test Depth	mm	275	275	275	275						
Max Size	mm	19	19	19	19						
Oversize Wet	%	0	0	0	0						
Field Wet Density	t/m³	2.07	2.05	2.05	2.06						
Field Moisture Content	%	-	-	-	-						
PCWD or APCWD*	t/m³	2.14	2.11	2.13	2.13						
*PCWD - Peak Converted Wet De	ensity , APCV	/D - Adjusted Peak Conve	rted Wet Density, If Oversiz	re material present PCWD a	nnd Moisture Variation is A	djusted					
Moisture Variation or Adjusted* (of OMC)	t/m³	1% (wet)	0.5% (wet)	0.5% (wet)	0.5% (wet)						
Compactive Effort		Standard	Standard	Standard	Standard						
Hilf Density Ratio	%	96.5	97.0	96.0	96.5						
Min Hilf Density Ratio	%	95	95	95	95						

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 AS1289 1.2.1 6.4(b) Sampling Test Method:

TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang

NATA Accreditation No. 19945

Project:

Location:

HILF DENSITY RATIO REPORT

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Newbridge South Stage 3

Wallan, Vic

Report Number:

Report Date:

Page:

6387.03-29 18/09/2020

of

Request No:

Testing performed and reported at our Main Laboratory

Sample No.		34087	34088	34089					
ID No.		1	2	3					
Test Date		8/09/2020	8/09/2020	8/09/2020					
Test Time		am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill					
		Lot 304	Lot 305	Lot 306					
Sample Location		South West of Lot	South West of Lot	South West of Lot					
		Layer 6	Layer 6	Layer 6					
Layer Depth	mm	300	300	300					
Test Depth	mm	275	275	275					
Max Size	mm	19	19	19					
Oversize Wet	%	0	0	0					
Field Wet Density	t/m³	1.94	2.05	2.03					
Field Moisture Content	%	-	-	-					
PCWD or APCWD*	t/m³	1.98	2.07	2.01					
*PCWD - Peak Converted Wet Der	nsity , APCI	ND - Adjusted Peak Conver	rted Wet Density, If Oversize	e material present PCWD ar	nd Moisture Variation is A	djusted			
Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (wet)	omc	0.5% (wet)					
Compactive Effort		Standard	Standard	Standard					
Hilf Density Ratio	%	98.0	99.0	100.5					
Min Hilf Density Ratio	%	95	95	95					

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Newbridge South Stage 3

Location: Wallan, Vic

Project:

Report Number:

6387.03-30 18/09/2020

of

Report Date: Request No:

Page:

_

Testing performed and reported at our Main Laboratory

		1	1	1		1	ı	ı	T	1
Sample No.		34090	34091	34092						
ID No.		1	2	3						
Test Date		10/09/2020	10/09/2020	10/09/2020						
Test Time		am-pm	am-pm	am-pm						
Material Source		Imported	Imported	Imported						
Material Description		Silty Clay	Silty Clay	Silty Clay						
To Be Used As		Backfill	Backfill	Backfill						
		Lot 301	Lot 302	Lot 303						
Sample Location		South West of Lot	South West of Lot	South West of Lot						
		Layer 6	Layer 6	Layer 6						
Layer Depth	mm	300	300	300						
Test Depth	mm	275	275	275						
Max Size	mm	19	19	19						
Oversize Wet	%	0	0	4						
Field Wet Density	t/m³	2.05	1.94	2.03						
Field Moisture Content	%	-	-	-						
PCWD or APCWD*	t/m³	2.03	1.97	2.04						
*PCWD - Peak Converted Wet Den	sity , APCI	WD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD ar	nd Moisture Variation is A	djusted				
Moisture Variation or Adjusted* (of OMC)	t/m³	omc	omc	0.5% (dry)						
Compactive Effort		Standard	Standard	Standard						
Hilf Density Ratio	%	101.0	98.5	100.0						
Min Hilf Density Ratio	%	95	95	95			·			

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03-31

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Report Date: 18/09/2020
Request No: -

Report Number:

Location: Wallan, Vic

Testing performed and reported at our Main Laboratory Page: 1 of 1

-							 _		
Sample No.		34093	34094	34095					
ID No.		1	2	3					
Test Date		10/09/2020	10/09/2020	10/09/2020					
Test Time		am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill					
		Lot 306	Lot 307	Lot 308					
Sample Location		North West of Lot	North West of Lot	North West of Lot					
		Layer 7	Layer 7	Layer 7					
Layer Depth	mm	300	300	300					
Test Depth	mm	275	275	275					
Max Size	mm	19	19	19					
Oversize Wet	%	0	0	0					
Field Wet Density	t/m³	2.10	2.04	2.01					
Field Moisture Content	%	-	-	-					
PCWD or APCWD*	t/m³	2.07	2.09	2.04					
*PCWD - Peak Converted Wet Der	nsity , APC\	ND - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	nd Moisture Variation is A	djusted			
Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (wet)	omc	2% (dry)					
Compactive Effort		Standard	Standard	Standard					
Hilf Density Ratio	%	101.5	98.0	98.5					
Min Hilf Density Ratio	%	95	95	95					

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03-32

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

Request No:

Report Date: 18/09/2020

Testing performed and reported at our Main Laboratory

Sample No. 34224 34225 34226 1 2 3 ID No. 11/09/2020 11/09/2020 11/09/2020 Test Date am-pm am-pm am-pm Test Time Imported Imported Imported Material Source Silty Clay Silty Clay Silty Clay Material Description Backfill Backfill Backfill To Be Used As Lot 306 Lot 307 Lot 308 Sample Location Eastern Edge of Lot Eastern Edge of Lot Eastern Edge of Lot Layer 7 Layer 7 Layer 7 300 300 300 mm Layer Depth 275 275 mm 275 Test Depth

Max Size	mm	19	19	19				
Oversize Wet	%	0	7	7				
Field Wet Density	t/m³	2.00	2.08	2.06				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.06	2.08	2.08				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	omc	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	97.0	100.0	99.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1
Sampling Test Method: AS1289 1.2.1 6.4(b)

NATA
ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Project:

Location:

HILF DENSITY RATIO REPORT

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Wallan, Vic

Newbridge South Stage 3

Report Number: Report Date:

6387.03-33 18/09/2020

of

Request No:

Page:

No:

Testing performed and reported at our Main Laboratory

Sample No. 34227 34228 34229 2 3 ID No. 15/09/2020 15/09/2020 15/09/2020 Test Date am-pm am-pm am-pm Test Time Imported Imported Imported Material Source Silty Clay Silty Clay Silty Clay Material Description Backfill Backfill Backfill To Be Used As Lot 320 Lot 321 Lot 319 Sample Location East of Lot East of Lot East of Lot Layer 7 Layer 7 Layer 7 300 300 300 mm Layer Depth 275 275 275 Test Depth mm 19 19 19 mm Max Size % 10 0 0 Oversize Wet t/m³ 2.10 2.01 2.05 Field Wet Density % Field Moisture Content t/m³ 2.07 2.03 2.07 PCWD or APCWD* *PCWD - Peak Converted Wet Density, APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted Moisture Variation or t/m³ 0.5% (wet) omc omc Adjusted* (of OMC) Standard Standard Standard Compactive Effort % 101.5 99.0 99.0 Hilf Density Ratio

Note:

Min Hilf Density Ratio

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

%

95

95

ACCREDITED FOR TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

ory

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Report Number:

Report Date:

Request No: Page:

6387.03-34

18/09/2020

of

Universal Corporation Pty Ltd Customer: Project:

Newbridge South Stage 3

Location: Wallan, Vic

Testing performed and reported at our Main Laboratory

Sample No. 34315 34316 34317 2 3 ID No. 15/09/2020 15/09/2020 15/09/2020 Test Date am-pm am-pm am-pm Test Time Imported Imported Imported Material Source Silty Clay Silty Clay Silty Clay Material Description Backfill Backfill Backfill To Be Used As Lot 320 Lot 321 Lot 319 Sample Location East of Lot East of Lot East of Lot Layer 8 Layer 8 Layer 8 300 300 300 mm Layer Depth 275 275 275 Test Depth mm 19 19 19 mm Max Size % 6 11 7 Oversize Wet t/m³ 1.93 1.91 2.01 Field Wet Density % Field Moisture Content t/m³ 1.98 1.97 PCWD or APCWD* *PCWD - Peak Converted Wet Density, APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted Moisture Variation or t/m³ 0.5% (dry) 0.5% (wet) 0.5% (wet) Adjusted* (of OMC) Standard Standard Standard Compactive Effort 98.0 97.0 101.5

Note:

Hilf Density Ratio

Min Hilf Density Ratio

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 AS1289 1.2.1 6.4(b) Sampling Test Method:

%

%

95

95

NATA TECHNICAL

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

of

Customer:Universal Corporation Pty LtdReport Number:6387.03-35Project:Newbridge South Stage 3Report Date:26/10/2020

Location: Wallan, Vic

Request No: -

Page:

Testing performed and reported at our Main Laboratory

Sample No.		34318	34319	34320					
ID No.		1	2	3					
Test Date		17/09/2020	17/09/2020	17/09/2020					
Test Time		am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill					
		Lot 321	Lot 320	Lot 319					
Sample Location		West of Lot	West of Lot	West of Lot					
		Layer 9	Layer 9	Layer 9					
Layer Depth	mm	300	300	300					
Test Depth	mm	275	275	275					
Max Size	mm	19	19	19					
Oversize Wet	%	0	0	0					
Field Wet Density	t/m³	2.01	2.02	2.00					
Field Moisture Content	%	-	-	-					
PCWD or APCWD*	t/m³	2.07	2.04	2.01					
*PCWD - Peak Converted Wet Der	nsity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	and Moisture Variation is Ad	djusted			
Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (wet)	omc	omc					
Compactive Effort		Standard	Standard	Standard					
Hilf Density Ratio	%	96.5	98.5	99.5					
Min Hilf Density Ratio	%	95	95	95					

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03-36

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

Page:

Report Date: 26/10/2020

Request No: -

Testing performed and reported at our Main Laboratory

Sample No.		34321	34322	34323						
ID No.		1	2	3						
Test Date		18/09/2020	18/09/2020	18/09/2020						
Test Time		am-pm	am-pm	am-pm						
Material Source		Imported	Imported	Imported						
Material Description		Silty Clay	Silty Clay	Silty Clay						
To Be Used As		Backfill	Backfill	Backfill						
		Lot 322	Lot 321	Lot 320						
Sample Location		West of Lot	West of Lot	West of Lot						
		Layer 9	Layer 9	Layer 9						
Layer Depth	mm	300	300	300						
Test Depth	mm	275	275	275						
<u> </u>										
Max Size	mm	19	19	19						
Oversize Wet	%	6	5	0						
Field Wet Density	t/m³	1.98	2.07	2.00						
Field Moisture Content	%	-	-	-						
PCWD or APCWD*	t/m³	1.95	2.07	2.01						
*PCWD - Peak Converted Wet De	nsity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	re material present PCWD a	nd Moisture Variation is A	Adjusted	•	•		<u>, </u>
Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (dry)	omc						
Compactive Effort		Standard	Standard	Standard						
Hilf Density Ratio	%	101.0	99.5	99.5						
Min Hilf Density Ratio	%	95	95	95						

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR

TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

6387.03-37

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3 Location: Wallan, Vic

Report Number:

Report Date: 26/10/2020

Request No:

Page:

Testing performed and reported at our Main Laboratory

Sample No. 34423 34424 34425 ID No. 24/09/2020 24/09/2020 24/09/2020 Test Date am-pm am-pm am-pm Test Time Imported Imported Imported Material Source Silty Clay Silty Clay Silty Clay Material Description Backfill Backfill Backfill To Be Used As Lot 310 Lot 309 Lot 311 Sample Location West of Lot West of Lot West of Lot Layer 6 Layer 6 Layer 6 300 300 300 mm Layer Depth mm 275 275 275

Max Size	mm	19	19	19				
Oversize Wet	%	4	10	2				
Field Wet Density	t/m³	2.05	2.02	2.01				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.04	2.05	2.05				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (wet)	omc	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	100.0	98.5	98.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Depth

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer:

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number:

6387.03-38 Report Date: 26/10/2020

Request No:

Page:

of

Testing performed and reported at our Main Laboratory

Sample No.		34009	34010	34011	34012			
D No.		1	2	3	4			
Test Date		4/09/2020	4/09/2020	4/09/2020	4/09/2020			
Test Time		am-pm	am-pm	am-pm	am-pm			
Material Source		Onsite Stockpile	Onsite Stockpile	Onsite Stockpile	Onsite Stockpile			
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay			
To Be Used As		Backfill	Backfill	Backfill	Backfill			
		Lot 331	Lot 330	Lot 329	Lot 328			
Sample Location		East of Lot	West of Lot	West of Lot	West of Lot			
		Layer 6	Layer 6	Layer 6	Layer 6			
_ayer Depth	mm	300	300	300	300			
Test Depth	mm	275	275	275	275			

Max Size	mm	19	19	19	19			
Oversize Wet	%	6	5	7	8			
Field Wet Density	t/m³	1.99	2.05	1.95	1.99			
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.06	2.10	2.04	2.10			

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (dry)	omc	omc			
Compactive Effort		Standard	Standard	Standard	Standard			
Hilf Density Ratio	%	97.0	97.5	95.5	95.0			
Min Hilf Density Ratio	%	95	95	95	95			

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang

Report Sheet No. CGS-700 Issued on 31-10-2017

NATA Accreditation No. 19945

Location:

HILF DENSITY RATIO REPORT

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03-39

of

Customer: Universal Corporation Pty Ltd

Wallan, Vic

Project: Newbridge South Stage 3

Report Number:

Page:

Report Date: 26/10/2020

Request No:

Testing performed and reported at our Main Laboratory

Sample No.	34645	34646	34647				
ID No.	1	2	3				
Test Date	15/10/2020	15/10/2020	15/10/2020				
Test Time	am-pm	am-pm	am-pm				
Material Source	Imported	Imported	Imported				
Material Description	Silty Clay	Silty Clay	Silty Clay				
To Be Used As	Backfill	Backfill	Backfill				
	Lot 307	Lot 308	Lot 309				
Sample Location	East of Lot	East of Lot	East of Lot				
	Layer 8	Layer 8	Layer 8				
Layer Depth mm	300	300	300				
Test Depth mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	0	6	0				
Field Wet Density	t/m³	2.07	2.05	2.09				
Field Moisture Content	%		-	-				
PCWD or APCWD*	t/m³	2.11	2.09	2.14				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (wet)	0.5% (dry)	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	98.0	98.0	98.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer: Project: Newbridge South Stage 3

Report Number: 6387.03-41 Report Date: 21/10/2020

Location: Wallan, Vic Request No:

					Testing perform	ed and reported at	our Main Laboratory		Page:	1 of	1
Sample No.		34651	34652	34653							
ID No.		1	2	3							
Test Date		16/10/2020	16/10/2020	16/10/2020							
Test Time		am-pm	am-pm	am-pm							
Material Source		Imported	Imported	Imported							
Material Description		Silty Clay	Silty Clay	Silty Clay							
To Be Used As		Backfill	Backfill	Backfill							
		Lot 318	Lot 317	Lot 311							
Sample Location		West of Lot	West of Lot	East of Lot							
		Layer 1	Layer 1	Layer 1							
Layer Depth	mm	300	300	300							
Test Depth	mm	275	275	275							
Max Size	mm	19	19	19							
Oversize Wet	%	6	8	0							
Field Wet Density	t/m³	1.99	1.95	1.93							
Field Moisture Content	%	-	-	-							
PCWD or APCWD*	t/m³	2.04	2.05	2.00							

*PCWD - Peak Converted Wet Density , AP	CWD - Adjusted Peak Conve	rted Wet Density, If Oversize	material present PCWD a	nd Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (wet)	0.5% (wet)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	97.5	95.5	96.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

ACCREDITED FOR TECHNICAL COMPETENCE

Approved Signatory

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

6387.03-42 21/10/2020

of

Report Date: Request No:

Page:

Testing performed and reported at our Main Laboratory

				T		-	•	•	1
Sample No.		34769	34770	34771					
ID No.		1	2	3					
Test Date		20/10/2020	20/10/2020	20/10/2020					
Test Time		am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill					
		Lot 309	Lot 310	Lot 312					
Sample Location		West of Lot	West of Lot	West of Lot					
		Layer 8	Layer 8	Layer 8					
Layer Depth	mm	300	300	300					
Test Depth	mm	275	275	275					
Max Size	mm	19	19	19					
Oversize Wet	%	9	9	8					
Field Wet Density	t/m³	1.97	2.01	2.00					
Field Moisture Content	%	-	-	-					
PCWD or APCWD*	t/m³	2.03	2.04	2.01					

*BOMB B / G / / / / B // ABOM	(D 4 !!	10 ' ' ' DOME	144 1 4 1 4 1 1 1 A P 4 1
*PCWD - Peak Converted Wet Density , APCW			

Moisture Variation or Adjusted* (of OMC)	t/m³	1.5% (dry)	1.5% (dry)	0.5% (wet)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	96.5	98.5	99.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Kang

S Kang

NATA Accreditation No. 19945

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer:

Project: Newbridge South Stage 3 Location: Wallan, Vic

Report Number:

Report Date: 24/10/2020

Request No:

Page:

of

6387.03-43

Testing performed and reported at our Main Laboratory

Sample No.		34772	34773	34774				
ID No.		1	2	3				
Test Date		21/10/2020	21/10/2020	21/10/2020				
Test Time		am-pm	am-pm	am-pm				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 309	Lot 310	Lot 311				
Sample Location		East of Lot	East of Lot	East of Lot				
		Layer 9	Layer 9	Layer 9				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				
Max Size	mm	19	19	19				
Oversize Wet	%	7	8	8				

Max Size	mm	19	19	19				
Oversize Wet	%	7	8	8				
Field Wet Density	t/m³	2.07	2.06	2.03				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.08	2.05	2.06				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	1.5% (dry)	1.5% (dry)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	99.5	100.5	98.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

ACCREDITED FOR TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang

NATA Accreditation No. 19945

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer:

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number:

6387.03-44 2/11/2020

Report Date: Request No:

					Testing performed	and reported at our N	Main Laboratory		Page: 1	of	1
Sample No.		34912	34913	34914							
ID No.		1	2	3							
Test Date		29/10/2020	29/10/2020	29/10/2020							
Test Time		am-pm	am-pm	am-pm							
Material Source		Imported	Imported	Imported							
Material Description		Silty Clay	Silty Clay	Silty Clay							
To Be Used As		Backfill	Backfill	Backfill							
		Lot 317	Lot 316	Lot 315							
Sample Location		West of Lot	East of Lot	West of Lot							
		Layer 2	Layer 2	Layer 2							
Layer Depth	mm	300	300	300							
Test Depth	mm	275	275	275							
		10	10	10						T	

Max Size	mm	19	19	19				
Oversize Wet	%	8	10	9				
Field Wet Density	t/m³	2.09	1.98	2.00				
Field Moisture Content	%		-	-				
PCWD or APCWD*	t/m³	2.09	2.03	2.06				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	1.5% (dry)	1.5% (wet)	0.5% (wet)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	100.0	97.0	97.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

ACCREDITED FOR TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer:

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number: Report Date:

6387.03-45 2/11/2020

Request No:

Page:

of

Testing performed and reported at our Main Laboratory

la							1	I	T	1	
Sample No.		34915	34916	34917							
ID No.		1	2	3							
Test Date		30/10/2020	30/10/2020	30/10/2020							
Test Time		am-pm	am-pm	am-pm							
Material Source		Imported	Imported	Imported							
Material Description		Silty Clay	Silty Clay	Silty Clay							
To Be Used As		Backfill	Backfill	Backfill							
		Lot 311	Lot 313	Lot 314							
Sample Location		West of Lot	East of Lot	East of Lot							
		Layer 2	Layer 2	Layer 2							
Layer Depth	mm	300	300	300							
Test Depth	mm	275	275	275							
Max Size	mm	19	19	19							
Oversize Wet	%	0	0	0							
Field Wet Density	t/m³	2.03	1.99	2.07							
Field Moisture Content	%	-	-	-							
PCWD or APCWD*	t/m³	2.08	2.04	2.08							
*PCWD - Peak Converted Wet De	nsity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	nd Moisture Variation is A	djusted					
Moisture Variation or Adjusted* (of OMC)	t/m³	1.5% (dry)	2% (dry)	0.5% (dry)							
Compactive Effort		Standard	Standard	Standard							
Hilf Density Ratio	%	97.5	97.5	100.0							
Min Hilf Density Ratio	%	95	95	95							

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

ACCREDITED FOR TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer:

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number:

6387.03-46 Report Date: 10/11/2020

Request No:

Page:

of

Testing performed and reported at our Main Laboratory

Sample No.		34918	34919	34920					
ID No.		1	2	3					
Test Date		4/11/2020	4/11/2020	4/11/2020					
Test Time		am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill					
		Lot 312	Lot 313	Lot 314					
Sample Location	ı	West of Lot	East of Lot	West of Lot					
		Layer 3	Layer 3	Layer 3					
Layer Depth	mm	300	300	300					
Test Depth	mm	275	275	275					
Max Size	mm	19	19	19					
Oversize Wet	%	8	6	0					
Field Wet Density	t/m³	2.05	2.03	2.11					
Field Moisture Content	%	-	-	-					
PCWD or APCWD*	t/m³	2.12	2.03	2.15					
*PCWD - Peak Converted Wet De	ensity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	and Moisture Variation is A	djusted			
Moisture Variation or Adjusted* (of OMC)	t/m³	2% (dry)	2% (dry)	0.5% (dry)					
Compactive Effort		Standard	Standard	Standard					
Hilf Density Ratio	%	96.5	99.5	98.5					
Min Hilf Density Ratio	%	95	95	95					

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

ACCREDITED FOR TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3 Location: Wallan, Vic

Report Number:

Report Date:

Page:

6387.03-47 10/11/2020

of

Request No:

Testing performed and reported at our Main Laboratory

Sample No. 34921 34922 34923 ID No. 5/11/2020 5/11/2020 5/11/2020 Test Date am-pm am-pm am-pm Test Time Imported Imported Imported Material Source Silty Clay Silty Clay Silty Clay Material Description Backfill Backfill Backfill To Be Used As Lot 302 Lot 301 Lot 303 Sample Location West of Lot East of Lot West of Lot Layer 7 Layer 7 Layer 7 300 300 300 mm Layer Depth mm 275 275 275

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	1.98	2.17	2.12				
Field Moisture Content	%		-	-				
PCWD or APCWD*	t/m³	2.04	2.13	2.17				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	1.5% (wet)	2% (dry)	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	97.0	102.0	97.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Depth

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03-48

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

Report Date: 10/11/2020

Request No:

Page:

Testing performed and reported at our Main Laboratory

					• • • • • • • • • • • • • • • • • • • •	 		
Sample No.		34924	34925	34926				
ID No.		1	2	3				
Test Date		6/11/2020	6/11/2020	6/11/2020				
Test Time		am-pm	am-pm	am-pm				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 304	Lot 305	Lot 307				
Sample Location		West of Lot	East of Lot	West of Lot				
		Layer 8	Layer 8	Layer 8				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.10	2.07	2.03				
Field Moisture Content	%		-	-				
PCWD or APCWD*	t/m³	2.12	2.12	2.09				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	2% (dry)	0.5% (dry)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	98.5	97.5	97.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

J 3/

Project:

Location:

HILF DENSITY RATIO REPORT

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690

6387.03-49

e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer:

Wallan, Vic

Newbridge South Stage 3

Report Number:

Report Date: 16/11/2020

Request No:

					Testing performed	and reported at our N	lain Laboratory		Page: 1	of	1 1
Sample No.		35042	35043	35044							
ID No.		1	2	3							
Test Date		9/11/2020	9/11/2020	9/11/2020							
Test Time		am-pm	am-pm	am-pm							
Material Source		Imported	Imported	Imported							
Material Description		Silty Clay	Silty Clay	Silty Clay							
To Be Used As		Backfill	Backfill	Backfill							
		Lot 301	Lot 302	Lot 303							
Sample Location		North of Lot	West of Lot	South of Lot							
		Layer 8	Layer 8	Layer 8							
Layer Depth	mm	300	300	300							
Test Depth	mm	275	275	275							

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.01	2.08	2.09				
Field Moisture Content	%		-	-				
PCWD or APCWD*	t/m³	2.09	2.09	2.12				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	2% (dry)	2% (dry)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	96.0	100.0	98.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

ACCREDITED FOR TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Customer:

Project:

Universal Corporation Pty Ltd

Newbridge South Stage 3

HILF DENSITY RATIO REPORT

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

16/11/2020

of

Report Date:

Page:

Report Number: 6387.03-50

Location: Wallan, Vic Request No: -

Testing performed and reported at our Main Laboratory

			1	1		1	ı	T	ī	1	1
Sample No.		35045	35046	35047	35048						
ID No.		1	2	3	4						
Test Date		10/11/2020	10/11/2020	10/11/2020	10/11/2020						
Test Time		am-pm	am-pm	am-pm	am-pm						
Material Source		Imported	Imported	Imported	Imported						
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay						
To Be Used As		Backfill	Backfill	Backfill	Backfill						
		Lot 308	Lot 309	Lot 310	Lot 311						
Sample Location		North of Lot	South of Lot	South of Lot	North of Lot						
		Layer 7	Layer 7	Layer 7	Layer 7						
Layer Depth	mm	300	300	300	300						
Test Depth	mm	275	275	275	275						
Max Size	mm	19	19	19	19						
Oversize Wet	%	0	0	0	0						
Field Wet Density	t/m³	2.06	2.11	2.03	2.01						
Field Moisture Content	%	-	-	-	-						
PCWD or APCWD*	t/m³	2.14	2.21	2.11	2.02						
*PCWD - Peak Converted Wet Den	sity , APC	ND - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	nd Moisture Variation is Ac	ljusted					
Moisture Variation or Adjusted* (of OMC)	t/m³	omc	omc	0.5% (dry)	2% (dry)						
Compactive Effort		Standard	Standard	Standard	Standard						
Hilf Density Ratio	%	96.0	95.5	96.0	99.5						
Min Hilf Density Ratio	%	95	95	95	95						

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

/ 9/

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03-51

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

Page:

Report Date: 16/11/2020

Request No:

Testing performed and reported at our Main Laboratory

Sample No.		35049	35050	35051					
ID No.		1	2	3					1
Test Date		11/11/2020	11/11/2020	11/11/2020					
Test Time		am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill					
		Lot 305	Lot 307	Lot 308					
Sample Location		East of Lot	South of Lot	West of Lot					
		Layer 7	Layer 7	Layer 7					
Layer Depth	mm	300	300	300					
Test Depth	mm	275	275	275					
Max Size	mm	19	19	19					
Oversize Wet	%	0	0	0					
Field Wet Density	t/m³	2.02	1.97	1.96					
Field Moisture Content	%	-	-	-					
PCWD or APCWD*	t/m³	2.11	2.07	2.06					
*PCWD - Peak Converted Wet Der	nsity , APC	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	nd Moisture Variation is Ad	ljusted			
Moisture Variation or Adjusted* (of OMC)	t/m³	2% (dry)	omc	omc					
Compactive Effort		Standard	Standard	Standard					

Note:

Hilf Density Ratio

Min Hilf Density Ratio

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

95.5

95

%

95.5

95

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

95.0

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03-52

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

Page:

Report Date: 16/11/2020

Request No:

Testing performed and reported at our Main Laboratory

Sample No.		35111	35112	35113				
ID No.		1	2	3				
Test Date		12/11/2020	12/11/2020	12/11/2020				
Test Time		am-pm	am-pm	am-pm				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 306	Lot 308	Lot 310				
Sample Location		East of Lot	West of Lot	East of Lot				
		Layer 8	Layer 8	Layer 8				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.04	1.95	1.98				
Field Moisture Content	%		-	-				
PCWD or APCWD*	t/m³	2.08	2.04	2.07				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	2% (dry)	omc	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	98.0	95.5	96.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

of

Customer:Universal Corporation Pty LtdProject:Newbridge South Stage 3

Report Number: 6387.03-53 Report Date: 25/11/2020

Page:

Location: Wallan, Vic

Request No: -

Testing performed and reported at our Main Laboratory

Sample No.	35114	35115	35116				
ID No.	1	2	3				
Test Date	13/11/2020	13/11/2020	13/11/2020				
Test Time	am-pm	am-pm	am-pm				
Material Source	Imported	Imported	Imported				
Material Description	Silty Clay	Silty Clay	Silty Clay				
To Be Used As	Backfill	Backfill	Backfill				
	Lot 311	Lot 312	Lot 314				
Sample Location	West of Lot	East of Lot	East of Lot				
	Layer 8	Layer 8	Layer 8				
Layer Depth m.	n 300	300	300				
Test Depth m.	n 275	275	275				

mm	19	19	19							
%	0	0	0							
t/m³	2.05	2.00	1.98							
%	-	-	-							
t/m³	2.08	2.01	2.09							
	% t/m³ %	% 0 t/m³ 2.05 % -	% 0 0 t/m² 2.05 2.00 %	% 0 0 0 t/m³ 2.05 2.00 1.98 % - - -	% 0 0 0 t/m³ 2.05 2.00 1.98 % - - -	% 0 0 0 t/m³ 2.05 2.00 1.98 % - - -	% 0 0 0 t/m³ 2.05 2.00 1.98 % - - -	% 0 0 0 t/m³ 2.05 2.00 1.98 % - - -	% 0 0 0 t/m³ 2.05 2.00 1.98 % - - -	% 0 0 0 t/m³ 2.05 2.00 1.98 % - - -

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	2% (dry)	0.5% (dry)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	98.5	99.5	95.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

mm

275

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

Report Date:

6387.03-54 25/11/2020

Request No:

Page: 1 of

Sample No. 35488 35489 35490 3 ID No. 16/11/2020 16/11/2020 16/11/2020 Test Date am-pm am-pm am-pm Test Time Imported Imported Imported Material Source Silty Clay Silty Clay Silty Clay Material Description Backfill Backfill Backfill To Be Used As Lot 316 Lot 316 Lot 315 Sample Location West of Lot East of Lot West of Lot Layer 8 Layer 8 Layer 8 300 300 300 mm Layer Depth

Testing performed and reported at our Main Laboratory

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	1.98	1.94	2.03				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.04	1.93	2.08				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

275

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	2% (dry)	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	97.0	100.5	97.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Depth

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1
Sampling Test Method: AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

275

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Report Sheet No. CGS-700 Issued on 31-10-2017

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690

e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer:

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number:

Report Date:

Page:

6387.03-55 25/11/2020

of

Request No:

Testing performed and reported at our Main Laboratory

Sample No.		35491	35492	35493				
D No.		1	2	3				
Test Date		17/11/2020	17/11/2020	17/11/2020				
Test Time		am-pm	am-pm	am-pm				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 317	Lot 317	Lot 317				
Sample Location		North West of Lot	South West of Lot	East of Lot				
		Layer 8	Layer 8	Layer 8				
_ayer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.00	1.95	1.93				
Field Moisture Content	%		-	-				
PCWD or APCWD*	t/m³	2.06	2.03	1.99				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	2% (dry)	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	97.0	96.0	97.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

ACCREDITED FOR TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

6387.03-56

of

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number:

Report Date: 25/11/2020

Request No:

Page:

Testing performed and reported at our Main Laboratory

Sample No. 35494 35495 35496 ID No. 18/11/2020 18/11/2020 18/11/2020 Test Date am-pm am-pm am-pm Test Time Imported Imported Imported Material Source Silty Clay Silty Clay Silty Clay Material Description Backfill Backfill Backfill To Be Used As Lot 314 Lot 313 Lot 315 Sample Location East of Lot East of Lot West of Lot Layer 9 Layer 9 Layer 9 300 300 300 mm Layer Depth mm 275 275 275 Test Depth

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	1.95	2.06	2.03				
Field Moisture Content	%		-	-				
PCWD or APCWD*	t/m³	2.04	2.07	2.09				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	2% (dry)	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	95.5	99.5	97.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang

Report Sheet No. CGS-700 Issued on 31-10-2017

NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

6387.03-57

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

Report Date: 25/11/2020

Request No:

· 1 of 1

					Testing performed	and reported at our	Main Laboratory		Page: 1	of	1
Sample No.		35497	35498	35499							
ID No.		1	2	3							
Test Date		19/11/2020	19/11/2020	19/11/2020							
Test Time		am-pm	am-pm	am-pm							
Material Source		Imported	Imported	Imported							
Material Description		Silty Clay	Silty Clay	Silty Clay							
To Be Used As		Backfill	Backfill	Backfill							
		Lot 313	Lot 312	Lot 313							
Sample Location		East of Lot	Centre of Lot	East of Lot							
		Layer 9	Layer 9	Layer 9							
Layer Depth	mm	300	300	300							
Test Depth	mm	275	275	275							
Max Size	mm	19	19	19							
Oversize Wet	%	0	0	0							
Field Wet Density	t/m³	2.12	2.07	2.08							
Field Moisture Content	%	-	-	-							
PCWD or APCWD*	t/m³	2.13	2.06	2.09							
*PCWD - Peak Converted Wet De	nsity , APCV	VD - Adjusted Peak Conve	erted Wet Density, If Oversize	e material present PCWD	and Moisture Variation is A	djusted					
Moisture Variation or Adjusted* (of OMC)	t/m³	omc	2% (dry)	0.5% (dry)							
Compactive Effort		Standard	Standard	Standard							
Hilf Density Ratio	%	99.5	100.5	99.5							
	%	95	95	95							

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

(ana

S Kang

NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

6387.03-58 25/11/2020

Request No:

Report Date:

.

					Testing performed	and reported at our	Main Laboratory		Page: 1	of	1
Sample No.		35500	35501	35502							
ID No.		1	2	3							
Test Date		20/11/2020	20/11/2020	20/11/2020							
Test Time		am-pm	am-pm	am-pm							
Material Source		Imported	Imported	Imported							
Material Description		Silty Clay	Silty Clay	Silty Clay							
To Be Used As		Backfill	Backfill	Backfill							
		Lot 309	Lot 310	Lot 311							
Sample Location	ı	West of Lot	East of Lot	West of Lot							
		Layer 9	Layer 9	Layer 9							
Layer Depth	mm	300	300	300							
Test Depth	mm	275	275	275							
Max Size	mm	19	19	19							
Oversize Wet	%	0	0	0							
Field Wet Density	t/m³	2.17	2.16	2.10							
Field Moisture Content	%	-	-	-							
PCWD or APCWD*	t/m³	2.19	2.18	2.10							
*PCWD - Peak Converted Wet De	ensity , APCV	/D - Adjusted Peak Conve	rted Wet Density, If Oversiz	re material present PCWD a	and Moisture Variation is A	Adjusted					
Moisture Variation or Adjusted* (of OMC)	t/m³	omc	2% (dry)	0.5% (dry)							
Compactive Effort		Standard	Standard	Standard							
Hilf Density Ratio	%	99.0	99.0	99.5							
Min Hilf Density Ratio	%	95	95	95							
Note:								 			

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Project:

Location:

HILF DENSITY RATIO REPORT

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Wallan, Vic

Newbridge South Stage 3

Report Number:

6387.03-59 7/12/2020

Request No:

Report Date:

Page:

-1 of

Testing performed and reported at our Main Laboratory

						1	r	ı	1	T .	1
Sample No.		35503	35504	35505							
ID No.		1	2	3							
Test Date		26/11/2020	26/11/2020	26/11/2020							
Test Time		am-pm	am-pm	am-pm							
Material Source		Imported	Imported	Imported							
Material Description		Silty Clay	Silty Clay	Silty Clay							
To Be Used As		Backfill	Backfill	Backfill							
		Lot 307	Lot 307	Lot 308							
Sample Location		West of Lot	East of Lot	East of Lot							
		Layer 9	Layer 9	Layer 9							
Layer Depth	mm	300	300	300							
Test Depth	mm	275	275	275							
Max Size	mm	19	19	19							
Oversize Wet	%	0	0	0							
Field Wet Density	t/m³	2.11	2.09	2.05							
Field Moisture Content	%	-	-	-							
PCWD or APCWD*	t/m³	2.19	2.15	2.07							
*PCWD - Peak Converted Wet De	nsity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD a	nd Moisture Variation is Ad	ljusted					
Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	2% (dry)	0.5% (dry)							
Compactive Effort		Standard	Standard	Standard							
Hilf Density Ratio	%	96.0	97.0	99.5							
Min Hilf Density Ratio	%	95	95	95							

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

35506

27/11/2020

am-pm

Imported

Silty Clay

Backfill

Lot 317

West of Lot

Layer 8

300

275

mm

mm

Project: Newbridge South Stage 3

Location: Wallan, Vic

Sample No.

ID No.

Test Date

Test Time

Material Source

To Be Used As

Layer Depth

Test Depth

Material Description

Sample Location

Report Number:

Report Date:

Page:

6387.03-60 7/12/2020

of

Request No:

Testing performed and reported at our Main Laboratory

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.08	2.09	2.07				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.11	2.14	2.07				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

35507

27/11/2020

am-pm

Imported

Silty Clay

Backfill

Lot 316

East of Lot

Layer 8

300

275

35508

27/11/2020

am-pm

Imported

Silty Clay

Backfill

Lot 315

West of Lot

Layer 8

300

275

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	2% (dry)	0.5% (dry)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	98.5	98.0	100.0				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1
Sampling Test Method: AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690

6387.03-61

of

e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Newbridge South Stage 3

Location: Wallan, Vic

Project:

Report Number:

Page:

Report Date: 14/12/2020

Request No:

Testing performed and reported at our Main Laboratory

Sample No.		35648	35649	35650				
ID No.		1	2	3				
Test Date		3/12/2020	3/12/2020	3/12/2020				
Test Time		am-pm	am-pm	am-pm				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 316	Lot 317	Lot 318				
Sample Location		West of Lot	East of Lot	East of Lot				
		Layer 9	Layer 9	Layer 9				
_ayer Depth r	mm	300	300	300				
	mm	275	275	275				
Max Size	mm	19	19	19				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.00	2.04	2.09				
Field Moisture Content	%		-	-				
PCWD or APCWD*	t/m³	2.09	2.05	2.08				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	2% (dry)	0.5% (dry)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	96.0	99.5	100.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL COMPETENCE

Approved Signatory

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

S Kang

NATA Accreditation No. 19945

Main Laboratory
16 Prime Street
Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer:

Project: Newbridge South Stage 3

Location: Wallan, Vic Report Number:

6387.03-62 Report Date: 21/12/2020

Request No:

Page:

of

Testing performed and reported at our Main Laboratory

Sample No.		35651	35652	35653				
D No.		1	2	3				
Test Date		7/12/2020	7/12/2020	7/12/2020				
Test Time		am-pm	am-pm	am-pm				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 323	Lot 322	Lot 320				
Sample Location		West of Lot	East of Lot	West of Lot				
		Layer 7	Layer 7	Layer 7				
Layer Depth	mm	300	300	300				
Test Depth	mm	275	275	275				
•								
Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.12	2.16	2.10				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.15	2.15	2.13				

*PCWD - Peak Converted Wet Density , APCI	VD - Adjusted Peak Converted Wet Density.	. If Oversize material present PCWD	and Moisture Variation is Adiusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	2% (dry)	0.5% (wet)				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	98.5	100.5	98.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

ACCREDITED FOR TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang

NATA Accreditation No. 19945

Report Sheet No. CGS-700 Issued on 31-10-2017

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3

Location: Wallan, Vic

Report Number:

6387.03-63 21/12/2020

Request No:

Report Date:

Page:

1 of

Testing performed and reported at our Main Laboratory

Sample No.		35654	35655	35656				
D No.		1	2	3				
est Date		8/12/2020	8/12/2020	8/12/2020				
est Time		am-pm	am-pm	am-pm				
Material Source		Imported	Imported	Imported				
Material Description		Silty Clay	Silty Clay	Silty Clay				
To Be Used As		Backfill	Backfill	Backfill				
		Lot 327	Lot 326	Lot 325				
Sample Location		North of Lot	South of Lot	East of Lot				
		Layer 4	Layer 4	Layer 4				
ayer Depth	mm	300	300	300				
est Depth	mm	275	275	275				

Max Size	mm	19	19	19				
Oversize Wet	%	0	0	0				
Field Wet Density	t/m³	2.15	2.12	2.18				
Field Moisture Content	%	-	-	-				
PCWD or APCWD*	t/m³	2.11	2.11	2.25				

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	omc	0.5% (wet)	omc				
Compactive Effort		Standard	Standard	Standard				
Hilf Density Ratio	%	102.0	101.0	96.5				
Min Hilf Density Ratio	%	95	95	95				

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

S Kang NATA Accreditation No. 19945

Report Sheet No. CGS-700 Issued on 31-10-2017

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

of

Customer:Universal Corporation Pty LtdReport Number:6387.03-64Project:Newbridge South Stage 3Report Date:21/12/2020

Location: Wallan, Vic Request No: -

Testing performed and reported at our Main Laboratory

				_			 	 	
Sample No.		35657	35658	35659					
ID No.		1	2	3					
Test Date		9/12/2020	9/12/2020	9/12/2020					
Test Time		am-pm	am-pm	am-pm					
Material Source		Imported	Imported	Imported					
Material Description		Silty Clay	Silty Clay	Silty Clay					
To Be Used As		Backfill	Backfill	Backfill					
		Lot 311	Lot 312	Lot 313					
Sample Location	ı	West of Lot	East of Lot	West of Lot					
		Layer 9	Layer 9	Layer 9					
Layer Depth	mm	300	300	300					
Test Depth	mm	275	275	275					
Max Size	mm	19	19	19					
Oversize Wet	%	0	0	0					
Field Wet Density	t/m³	1.99	1.99	2.00					
Field Moisture Content	%	-	-	-					
PCWD or APCWD*	t/m³	2.09	2.06	2.08					
*PCWD - Peak Converted Wet De	ensity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	re material present PCWD a	nd Moisture Variation is A	djusted			
Moisture Variation or Adjusted* (of OMC)	t/m³	omc	omc	omc					
Compactive Effort		Standard	Standard	Standard					
Hilf Density Ratio	%	95.0	96.5	96.0					
Min Hilf Density Ratio	%	95	95	95					

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

. .

Approved Signatory

Page:

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Universal Corporation Pty Ltd Customer:

Project: Newbridge South Stage 3 Location: Wallan, Vic

Report Number: Report Date:

21/12/2020

6387.03-65

Request No:

					Testing performed	and reported at our	Main Laboratory		Page: 1	of 1
Sample No.		35660	35661	35662						
ID No.		1	2	3						
Test Date		10/12/2020	10/12/2020	10/12/2020						
Test Time		am-pm	am-pm	am-pm						
Material Source		Imported	Imported	Imported						
Material Description		Silty Clay	Silty Clay	Silty Clay						
To Be Used As		Backfill	Backfill	Backfill						
		Lot 312	Lot 313	Lot 314						
Sample Location		East of Lot	East of Lot	East of Lot						
		Layer 9	Layer 9	Layer 9						
Layer Depth	mm	300	300	300						
Test Depth	mm	275	275	275						
Max Size	mm	19	19	19						
Oversize Wet	%	0	0	0						
Field Wet Density	t/m³	1.95	1.99	1.96						
Field Moisture Content	%	-	-	-						
PCWD or APCWD*	t/m³	2.05	2.09	1.98						
*PCWD - Peak Converted Wet Der	sity , APCV	VD - Adjusted Peak Conve	rted Wet Density, If Oversiz	e material present PCWD	and Moisture Variation is A	djusted		 		
Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	omc	omc						
Compactive Effort		Standard	Standard	Standard						
Hilf Density Ratio	%	95.0	95.5	98.5						
Min Hilf Density Ratio	%	95	95	95						
Note:								 		

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

ACCREDITED FOR TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory
16 Prime Street
Thomastown VIC 3074
Ph: 03 9465 9813
Fax: 03 9465 7690
e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3 (Reserve)

Location: Wallan, Vic

Report Number:

Report Date:

Page:

6387.03-66 28/12/2020

of

Request No:

Testing performed and reported at our Main Laboratory

Sample No.		40047	40048	40049	40050	40051	40052	40053	40054	40055	40056
ID No.		1	2	3	4	5	6	7	8	9	10
Test Date		3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020
Test Time		am-pm	am-pm	am-pm	am-pm	am-pm	am-pm	am-pm	am-pm	am-pm	am-pm
Material Source		Insitu	Insitu	Insitu	Insitu	Insitu	Insitu	Insitu	Insitu	Insitu	Insitu
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay
To Be Used As		Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill
		Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve
Sample Location		North of Reserve	South of Reserve	East of Reserve	East of Reserve	East of Reserve	North of Reserve	North of Reserve	West of Reserve	West of Reserve	West of Reserve
		Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3
Layer Depth	mm	300	300	300	300	300	300	300	300	300	300
Test Denth	mm	275	275	275	275	275	275	275	275	275	275

Max Size	mm	19	19	19	19	19	19	19	19	19	19
Oversize Wet	%	0	0	0	0	0	0	0	0	0	0
Field Wet Density	t/m³	1.93	1.95	1.94	1.98	1.97	2.02	1.96	1.94	1.95	1.97
Field Moisture Content	%	-	-	-	-	-	-	-	-	-	-
PCWD or APCWD*	t/m³	1.98	2.01	1.94	2.03	1.99	2.03	2.00	2.03	2.01	2.07

*PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	0.5% (dry)	2% (dry)	2% (dry)	0.5% (wet)	omc	2% (dry)	omc	omc	omc	omc
Compactive Effort		Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard	Standard
Hilf Density Ratio	%	97.5	97.0	100.0	97.5	99.0	100.0	95.5	98.5	97.0	95.0
Min Hilf Density Ratio	%	95	95	95	95	95	95	95	95	95	95

Note:

 Test Methods:
 AS1289 5.8.1, 5.7.1, 2.1.1

 Sampling Test Method:
 AS1289 1.2.1 6.4(b)

NATA
ACCREDITED FOR
TECHNICAL
COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

Main Laboratory 16 Prime Street Thomastown VIC 3074 Ph: 03 9465 9813 Fax: 03 9465 7690 e: info@continentgeotech.com.au

Customer: Universal Corporation Pty Ltd

Project: Newbridge South Stage 3 (Reserve)

Location: Wallan, Vic Report Number:

6387.03-66 Report Date: 28/12/2020

Request No:

Page:

of

2

Testing performed and reported at our Main Laboratory

Sample No.		40057	40058	40059	40060	40061	40062	40063	40064	40065	40066
ID No.		11	12	13	14	15	16	17	18	19	20
Test Date		3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020	3/12/2020
Test Time		am-pm	am-pm	am-pm	am-pm	am-pm	am-pm	am-pm	am-pm	am-pm	am-pm
Material Source		Insitu	Insitu	Insitu	Insitu	Insitu	Insitu	Insitu	Insitu	Insitu	Insitu
Material Description		Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay
To Be Used As		Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill
		Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve
Sample Location		South of Reserve	South of Reserve	North of Reserve	East of Reserve	West of Reserve	North of Reserve	South of Reserve	West of Reserve	East of Reserve	East of Reserve
		Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3	Stage 3
Layer Depth	mm	300	300	300	300	300	300	300	300	300	300
Test Depth	mm	275	275	275	275	275	275	275	275	275	275

Max Size	mm	19	19	19	19	19	19	19	19	19	19
Oversize Wet	%	0	0	0	0	0	0	0	0	0	0
Field Wet Density	t/m³	1.91	1.94	1.91	1.96	1.98	2.00	2.01	2.00	2.00	2.03
Field Moisture Content	%		-	-		-	-	-	-		-
PCWD or APCWD*	t/m³	1.99	1.97	1.96	2.03	2.03	2.04	1.98	2.07	2.01	2.05

^{*}PCWD - Peak Converted Wet Density , APCWD - Adjusted Peak Converted Wet Density, If Oversize material present PCWD and Moisture Variation is Adjusted

Moisture Variation or Adjusted* (of OMC)	t/m³	2% (dry)	2% (dry)	2% (dry)	omc	omc	omc	0.5% (wet)	0.5% (wet)	2% (dry)	omc
Compactive Effort		Standard	Standard	Standard	Standard						
Hilf Density Ratio	%	96.0	98.5	97.5	96.0	97.5	97.5	102.0	96.5	99.5	99.0
Min Hilf Density Ratio	%	95	95	95	95	95	95	95	95	95	95

Note:

Test Methods: AS1289 5.8.1, 5.7.1, 2.1.1 Sampling Test Method: AS1289 1.2.1 6.4(b)

TECHNICAL COMPETENCE

Accredited for compliance with ISO/IEC 17025-Testing.

The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Approved Signatory

-End of Document-